Mr. Rogove

Date:

LEARNING OBJECTIVE: We will solve equations involving factored expressions. (Alg1M1L12)

CONCEPT DEVELOPMENT:

Zero-Product Property: If ab = 0, then either a = 0 or b = 0 or a = b = 0Example: (x - 3)(4x - 2) = 0

Review of Difference of Two Squares $(x + 4)(x - 4) = x^2 - 4^2$

What if we had
$$\frac{x^2 - 81 = 0?}{X^2 - 81 = 0}$$
 $\begin{array}{c} X^2 - 81 = 0 \\ + 61 + 81 \\ \hline \\ X^2 = 81 \end{array}$
 $\begin{array}{c} X^2 - 81 = 0 \\ (X+9)(X-9) = 0 \\ \hline \\ X+9 = 0 \\ \hline \\ X=-9 \\ \hline \\ X=-9 \\ \hline \end{array}$
 $\begin{array}{c} X^2 - 81 = 0 \\ (X+9)(X-9) = 0 \\ \hline \\ X=-9 \\ \hline \end{array}$

Factoring Review with linear factors:

$$(x+3)(3x+8) - (x+3)(3x)$$

 $(X+3)[(3x+8)-3x]$

$$(W+5) + 2(w+5)$$

$$(3x-4)(x+9) + (3x-4)(2x-4)$$

$$(3x-4)(x+9) + (3x-4)(x+9)$$

Mr. Rogove

Date: _____

GUIDED PRACTICE: **Steps for Solving Equations Involving Factored Expressions**

- 1. If necessary, find a common factor.
- 2. Create two equations (if there are two factors), with each factor equal to 0.
- 3. Solve each equation to find your solution set. Write your answer in set notation.

(x - 10)(x + 3) = 0	(x-4)(x+3) = 0	
X-10=0 (X+3=0	X-4= 0	X+3=0
x=10	X 4	×=-3
{10,-3}	{ 4,-	-3}
$2x^2 - 10x = 0$ $2x(x-5) = 0$	$6x^2 + 3$	$\frac{42x = 0}{2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6x=0	9" X+7=D
{0,5}	_	X=-7
	<i>{0,</i>	•)
x(x-5) + 4(x-5) = 0 $(X-5)(X+4) = 0$	$\times \frac{x(5x-20)+}{(5x-20)}$	
X-5=0, X+4=D	5x-20=0	•
X=5 (x=-4	X=4	X=-2
) (r 2	{4,-2}	
{5,-4}		,

Mr. Rogove

Date: _____

$$(x+3)(x-3) = 0$$

$$(x+2)(x-2)=0$$

$$x^2 - 9 = 5(x - 3)$$

$$(X+3)(X-3) = 5(x-3)$$

- $5(x-3) - 5(x-3)$

$$(x+3)(x-3)-5(x-3)=0$$

$$(X-3)[(X+3)-5]=0$$

$$(x-2)(2x-3) = (x-2)(x+1)$$

$$(\chi-2)(2\chi-3)_{-}(\chi-2)(\chi+1)=0$$

$$(x-2)(x-4)=0$$

$$x^2 - 4 = (x+2)(x-5)$$

$$(3x-2)(x+12) = (3x-2)(2x-10)$$

$$(3x-2)(x+12)-(2x-10)=0$$

$$3x-2=0$$
 $-x+22=0$ $x=2v$

$$\left\{\frac{2}{3},22\right\}$$

Name:	Math 7.2, Period
Mr. Rogove	Date:

INDEPENDENT PRACTICE:

Will be Page s 98 from Alg 1 Mod 1 lesson 17...this is student problem set for lesson.

ACTIVATING PRIOR KNOWLEDGE:

We know how to calculate the difference of two squares using diagrams:

(x+y)(x-y)	(20+1)(20-1)	

CLOSURE:

A string 60 inches long is to be laid out on a table top to make a rectangle of perimeter 60 inches. Write the width of the rectangle as 15 + x inches. What is the expression for its length? What is the expression for its area? What value of x gives an area of largest possible value. Describe the shape of the rectangle for this special value of x.

Notes:

This maps to lesson 17 from Alg 1, Mod 1. Should be good lead in for Mod 4 material on factoring...