LEARNING OBJECTIVE: We will prove the Pythagorean Theorem to be $a^2 + b^2 = c^2$. (G8M2L12)

CONCEPT DEVELOPMENT:

<u>Pythagorean Theorem:</u> If the lengths of the legs of a right triangle are a and b, and the length of the hypotenuse is c, then $a^2 + b^2 = c^2$.

Anatomy of a Right Triangle

Proving the Pythagorean Theorem

$$(0+b)(a+b) = c^2 + \frac{1}{2}ab \cdot 4$$

$$0^2 + 2ab + b^2 = c^2 + 2ab$$

$$-2ab - 2ab$$

$$a^2 + b^2 = c^2$$

Mr. Rogove

Date:_____

GUIDED PRACTICE:

Steps for Finding the Length of the sides of a Right Triangle

- 1. Identify the length of the given sides of a right triangle.
- 2. Use the Pythagorean Theorem $(a^2 + b^2 = c^2)$ to substitute the length of the given sides for a ,b, or c.
- 3. Simplify and determine the length of the missing side.

Note: Triangles NOT drawn to scale!!

Mr. Rogove

Date:_____

$$a^{2} + b^{2} = c^{2}$$
 $a^{2} + 6^{2} = 16^{2}$
 $a^{2} + 81 = 226$
 $-81 - 81$
 $a^{2} = 144$

ح عام

$$\frac{44^{4}-16}{12}$$

$$\frac{20}{4.4}$$

$$\frac{13^{2}+6^{2}=20^{2}}{144+6^{2}=400}$$

$$\frac{144+6^{2}=400}{156}$$

Mr. Rogove

Date:_____

x = 175 5

$$|0^{2}+5^{2}=\chi^{2}$$

$$|00+25=\chi^{2}$$

$$|25=\chi^{2}$$

$$\sqrt{|25=\chi^{2}|}$$

 $|b^{2}+9^{2}=\chi^{2}$ $356+81=\chi^{2}$ $\sqrt{337}=\chi^{2}$

NAME:	Math, Period
Mr. Rogove	Date:

INDEPENDENT PRACTICE:

ACTIVATING PRIOR KNOWLEDGE:

CLOSURE:

The dimensions of a soccer field are 90 yards wide by 120 yards long. What is the diagonal distance from one corner to the other?

TEACHER NOTES:

Homework is going to be Problem set from lesson 15 and 16?