\qquad , Period \qquad
Mr. Rogove
Date: \qquad

LEARNING OBJECTIVE: We will look at constant rates using two variables and graph points related to constant rate problems. (G8M4L10)

CONCEPT DEVELOPMENT:

When we express a constant rate as a relationship between two variables, we can create tables to show the relationship and graph this relationship on a coordinate plane.
Example: Pauline mows a lawn at a constant rate. Suppose she mows 35 square feet in 2.5 minutes. How many square feet can she mow in x minutes?
Equation in 2 variables:
Graph:
$\frac{y}{x}=\frac{35}{2.5}$

$$
y=\frac{35}{2.5} x
$$

Table:

\qquad
\qquad , Period \qquad
Mr. Rogove Date: \qquad

GUIDED PRACTICE:

Steps for Expressing Rates as Equations, Tables and in Graphs

1. Begin by creating a linear equation using 2 variables that includes the rate.
2. Create a table and fill in the values.
3. Label and create a graph based on the table of values.

Water leaks out of a faucet at a constant rate. In 4 minutes, 35 milliliters of water dripped out. How many milliliters of water leak out in x minutes?

Linear Equation (in two variables)

K
 $\left(\frac{y}{x}\right)=\left(\frac{35}{4}\right) \times$
 $y=\frac{35}{4} x$
 $y=8.75 x$

Table of values

Time (in minutes) x	Linear equation $y=8.75 x$	Water (in mL) y
1	$y=8.75(1)$	8.75
2	$y=8.75(2)$	17.50
4	$y=8.75(4)$	35.00
6	$y=8.75(6)$	52.50
8	$y=8.75(8)$	70.00

The faucet leaks at a rate of

$$
8.75 \mathrm{~mL} \text { per minute. }
$$

\qquad , Period \qquad

Date: \qquad
Kaia has a part time job as a babysitter. She worked last Friday evening and earned $\$ 32.50$ for working 2.5 hours. How much money would she earn in x hours?

Linear Equation (in two variables)
$\frac{y}{x}=\frac{32.5}{2.5}$
$y=\frac{32.5}{2.5} x$
$y=13 x$

Table of values

Time v (in hours) x	Linear Equation	Money earned (in dollars)
2	$y=13(2)$	26
4	$y=13(4)$	52
6	$y=13(6)$	78
8	$y=13(8)$	104

\qquad , Period \qquad
Mr. Rogove Date: \qquad
Lucas types at a constant rate. He can type one full page of text in $3 \frac{1}{2}$ minutes. How many pages can type in x minutes?

Linear Equation (in two variables)
$\frac{y}{x}=\frac{1}{3.5}$
$y=\frac{2}{7} x$

Table of Values

Time (in	Linear Equation	Pages typed
minutes) x	$y=\frac{2}{7} x$	y
1	$y=\frac{2}{7}(1)$	$\frac{2}{7}$
9	$y=\frac{2}{7}(9)$	$\frac{18}{7}=2 \frac{4}{7}$
18	$y=\frac{2}{7}(18)$	$\frac{36}{7}=5 \frac{1}{7}$
27	$y=\frac{2}{7}(27)$	$\frac{54}{7}=7 \frac{7}{7}$
36	$y=\frac{7}{7}(36)$	$\frac{72}{7}=10 \frac{2}{7}$

\qquad , Period \qquad
\qquad
Rachel loves to read. She loves reading so much that she reads 4 books every 15 days. How many books can she read in x days?

Linear Equation (in two variables)

Table of Values

Time (in days)	Linear Equation	Books read
10		
20		
30		
40		

\qquad
\qquad , Period \qquad
\qquad

INDEPENDENT PRACTICE:

Activating Prior Knowledge:

Closure:

TEACHER NOTES:

Lesson 11 from ENY Module 4, Grade 8. Can also give the Yummy Math light bulbs activity as independent practice.
Homework is Lesson 11 problem set.

