Ν	٨	NЛ	F	
IN.	А.	I۷I	С	

Date:_____

LEARNING OBJECTIVE: We will solve linear equations using the standard form of a linear equation. (G8M4L11)

EXPLORATION:

CONCEPT

Brandon tells you he scored 32 points in a basketball game with ONLY two- and three- point shots (no free throws). How many of each type of basket did he score? Use the table to organize your work.

Number of two-pointers	Number of three-pointers
	0 I
4	8
7	6
j.	L
l (ç	Ó
13	2

Let *x* be the number of two-pointers he scored, and *y* be the number of three-pointers he scored. Write an equation to represent the situation.

dX+3y=32	a = 2
	0
DEVELOPMENT.	c = 32

Standard Form of a Linear Equation

ax + by = c

a, b, and c are constants and at least one of a or b does not equal zero

A **solution to a linear equation** is an ordered pair of numbers (x, y) so that x and y make the equation a true statement.

We can find solutions by 'fixing a number for *x* or *y*' and solving for the other variable.

NAME.	
INAME.	

Math,]	Period
---------	--------

Date:_____

GUIDED PRACTICE:

Steps for Finding Solutions to Linear Equations Written in Standard Form

- 1. Create a table.
- 2. Fix a number for *x* and solve for *y* (or vice versa).
- 3. Plot each point on a graph.
- 4. List the solutions as ordered pairs

Find five solutions for the linear equation x + y = 3 and plot the solutions as points on a coordinate plane.

X	Linear equation	У	Solution
	x + y = 3		(x , y)
Q	0+y=3	m)	(0,3)
	1+4=3	2	(JZ)
لع	2+1 =3	1	(a , 1)
لر	3 + y = 3	Ο	$(\mathcal{F}, \mathcal{O})$
L	4+1=3	-)	(4, .)

0

-2

-3

-4

LS (8,-5) a solution?

x 8

ے . ک

Math ______, Period _____

Date:_____

Find five solutions to the linear equation 2x - y = 10 and then plot the solutions as points on a coordinate plane.

X	Linear equation	У	Solution
	2x - y = 10		(x, y)
1	a(1) - y = 10	-8	(1,-8)
2	2(2)-7=1D	-6	(2,-6)
3	2(3)-1-10	-4	(3, -4)
4	d(4) - y = 10	-2	(4,-2)
S	2(5)-4=10	D	(5, 6)

Date:_____

At the store, you can buy a bag of candy for \$2 and a drink for \$1. Assume you have a total of \$35 to spend and you are feeling generous and want to buy some snacks for your friends. Write an equation in standard form to represent the number of bags of candy, *x*, and number of drinks, *y*, you can buy with your \$35.

$$ax+1/=35$$

Find five solutions to the linear equation and plot the solutions as points on the coordinate plane.

x	Linear	У	Solution
(candy)	equation	(drinks)	$(\boldsymbol{x}, \boldsymbol{y})$
\bigcirc	2(b)+y=35	35	(0, 35)
17	Q(17)+1=35		(17,1)
5	d(5)+y=35	25	(5,25)
12	2 (2)+y=3	- 11	(12,11)
15	2(17)+y=35	5	(15,5)
30 34 32 30 28 26 24 22 20 18 14 12 10 8 0 10 10 10 10 10 10 10 10 10			

11 12 13 14

15 16

10

2

NAME:_____

Mr. Rogove

Math ______ , Period ______

Date:_____

Math _	, Period	

Date:_____

Find five solutions to the linear equation $x - \frac{3}{2}y = -2$ and then plot the solutions as points on a coordinate plane.

X	Linear equation	у	Solution (<i>x</i> , <i>y</i>)
	$x-\frac{3}{2}y=-2$		
	X-==(2)=-2	9	(1,2)
4	X-====(4)=-2	4	(4,4)
7	$\chi - \frac{3}{a}(b) = -2$	6	(7, b)
) ()	$X - \frac{3}{2}(8) = -2$	8	(10,8)
В	x-3/(10)=-2	D	$(3, \mathcal{D})$
		9 10	11 12 13 14 .15

N	٨	N	16	١.
IN.	н	IV.	IΓ	÷.

Math _____, Period _____

Mr. Rogove

Date:_____

INDEPENDENT PRACTICE:

Hand out Problem Set—whatever doesn't get done is HW.

CLOSURE:

Hand out exit ticket for lesson 12

TEACHER NOTES:

Matches lesson 12 from mod 4, grade 8