NAME: \qquad
\qquad , Period \qquad
Mr. Rogove
Date: \qquad

LEARNING OBJECTIVE: We will know when a linear equation has one unique solution, no solution, or infinitely many solutions. (G8M4L6)

CONCEPT DEVELOPMENT:
Linear Equations either have one solution, no solutions, or infinitely many solutions.

One Solution	No Solution	Infinitely Many Solutions
$\begin{gathered} 7 x-3=5 x+5 \\ -5 x \quad-5 x \\ 2 x-3=5 \\ +3=3 \\ \frac{2 x}{2}=\frac{8}{2} \\ x=4 \end{gathered}$	$\begin{gathered} 7 x-3=7 x+54 \\ -7 x \quad-7 x \\ -3 \neq 5 \text { ? } 17!! \end{gathered}$ No solution	Infinitely many solotions
- Different coefficients - If constant terms are equal, $x=0$!	Same coefficients - Different constant	- Same coefficients - Same Constant
$\begin{aligned} 3 x+4 & =8 x-9 \\ -4 x-5 & =6-11 x \\ 9+\frac{1}{2} x & =5 x-1 \end{aligned}$	$\begin{aligned} & 5 x-3=5 x+7 \\ & 6 x+5=8+6 x \\ & 10 x+100=10 x-100 \\ & 12-15 x-2-15 x \\ & \frac{5}{4} x-1=1+\frac{5}{4} x \end{aligned}$	$\begin{gathered} 2 x-4=-4+2 x \\ 10 x-4=-4+10 x \\ 3 x=3 x+5 \\ -2 x+5=-2 x+5 \\ 3(x+5)=\frac{1}{3}(9 x+45) \\ 7+9 x=9 x+7 \end{gathered}$
$\begin{aligned} & 1 \begin{array}{l} a x+b=c x+d(a \neq c) \\ -c x \\ -c x \\ a x-c x+b=d \\ a x-c x=-b-b \end{array} \\ & \times(a-c)=\frac{d-b}{a-c} x=\frac{d-b}{a-c} \end{aligned}$	$\begin{gathered} \begin{array}{c} x+b=x+c \\ b \neq c \end{array} \\ \text { No numbers work!! } \end{gathered}$	$\begin{gathered} x+a=x+a \\ a=a \\ x=x \end{gathered}$ All numbers work!!

NAME: \qquad Math \qquad , Period \qquad
Mr. Rogove
Date: \qquad
Guided Practice:
Steps for Classifying Solutions to Linear Equations

1. If possible, create simpler expressions by distributing, combining like terms, etc.
2. Look at the structure of the equation. Circle the coefficients and underline the constant terms.
3. Determine the classification of the equation.

$\begin{array}{r} 11 x-2 x+15=8+9 x+7 \\ 9 x+15=9 x+15 \end{array}$ Same crefficient Same constant	$\begin{aligned} & -7(3 x+1)-5=-13 x-4(3+2 x) \\ & -21 x+(-7)-5=-13 x-12-8 x \\ & -21 x-12=-21 x-12 \end{aligned}$ Same coefficient Same constant
$\begin{aligned} & 3(x-14)+1=-4(x-12) \\ & 3 x-42+1=-4 x+48 \\ & 3 x-41=-4 x+48 \end{aligned}$ Different coefficints 1 solution Different constants $x \neq 0$	$\frac{1}{2} x+3(12-2 x)=\frac{1}{2} x-5(x+7)$

\qquad Math \qquad , Period \qquad
Mr. Rogove
Date: \qquad

$$
\begin{gathered}
-3 x+32-7 x=-2(5 x+10) \\
-10 x+32=-10 x-20
\end{gathered}
$$

Same coefficient
different constant No solution.

$$
\begin{aligned}
3(3 x-5)+15 x & =-5(-4 x-5)+4 x \\
9 x-15+15 x & =20 x+25+4 x \\
24 x-15 & =24 x+25
\end{aligned}
$$

Same coefficients different Constants.
No Solutions!"

$$
3(3 x+1)=2(x+2)-1
$$

$-3(3 x+8)=4(7 x-6)$
$-9 x_{x}-24=202-24$
Different costhicents 1 solution Same constant,

$$
x=0
$$

\qquad
\qquad , Period \qquad
Mr. Rogove
Date: \qquad

INDEPENDENT PRACTICE:

Classify each solution:

$18 x+\frac{1}{2}=6(3 x+25)$	Write an equation that uses the distributive property and has one unique solution. How do you know it will have one solution? Solve it to verify.
$5(x+9)=5 x+45$	

NAME: \qquad Math \qquad , Period \qquad
Mr. Rogove
Date: \qquad
Activating Prior Knowledge:
We can write equivalent expressions...

	3(3x-5)+14-7x
$=$	$9 x-15+14-7 \underline{x}$
$=$	$-5 x-(2 x-11)+3(5 x-12)$
$3(3 x-5)+14-7 x=2 x-1$	

Closure:
Write equation that ha $\stackrel{5}{5}$ equations that hat ion, and infinitely many solutions.

TEACHER NOTES:

$$
\frac{1}{3}(9 x+3)=3\left(x x+\frac{1}{3}\right) 10 x+10=10 x-10
$$

Lesson 7 from ENY
HW Khan: Linear equations with one, zero, or infinite solutions.

