\qquad Period \qquad
Mr. Rogove
Date: \qquad

LEARNING OBJECTIVE: We will work with proportional relationships in terms of average speed and constant speed. (G8M4L9)

CONCEPT DEVELOPMENT:

Rates: A proportional relationship between two quantities.

Examples: 3 coughs for 1 sneeze

- Six tacos cost $\$ 7.50$ at Taco Bell
- I can walk 3 miles in 48 minutes.
- My camera can take 10 pictures in 2 seconds. 10 cows in every sq.ft.
- I can text 120 words every l 1.5° minutes.

Non-Examples:

- In a race, I spent 43 minutes on the first 4 miles, and 42 minutes on the last 3 miles.
- Each year, I grow 10\% bigger than the year before.

Swims 5 laps in 10 minutes
We can express proportional relationships by creating tables.
Example: If a $7^{\text {th }}$ grader can write texts at a constant rate of 55 words per minute, we can create the following ta

Time (in minutes) χ	Words written in a text				
1	55	$	$	2	110
:---:	:---:				
3	165				
4	220				
10	550				
100	5,500				

Constant Speed v. Average Speed

\qquad
\qquad , Period \qquad
Mr. Rogove

Date: \qquad

GUIDED PRACTICE:
Steps to Representing Proportional Relationships in Two Variables

1. Read the problem carefully and set up a rate that can help you measure the constant rate.
2. Let y represent the distance, cost, or other quantity (that is NOT time)
3. Let x represent the time.
4. Set up a proportion and solve for y.

Mason walks at a constant speed from his house to school 1.5 miles away. It took him 25 minutes to get to school.

How many miles has he walked after 15 minutes?

$$
\begin{gathered}
\frac{y}{x}=\frac{1.5}{25} x \frac{y}{15} \\
1.5(15)=25 y \\
\frac{22.5}{25}=\frac{28 y}{28} \\
\frac{2.9=y}{0.9}
\end{gathered}
$$

How many miles has he walked after x minutes?

A plane travels at a constant rate from San Jose to Chicago 1,800 miles away. It takes 4.5 hours to get to Chicago.

How far had the plane gone after 2 hours?

$$
\begin{gathered}
\frac{45 y}{48}=\frac{3600}{45} \\
y=800
\end{gathered}
$$

How many miles has the plane traveled after x hours?

unit rate.
\qquad
\qquad , Period \qquad
Mr. Rogove
Date: \qquad

Jennifer's car travels at a constant speed as she drives across country. It takes her 7 hours to travel 469 miles.

How many miles has she driven in 2.5 hours?
$\frac{469}{7} \times \frac{y}{2.5}$
$\frac{7 \pi}{\pi}=\frac{1172.5}{7} \quad$ m 2.5 his
$y=167.5$
How many miles has she driven in x hours?

Evan is 3 miles away from home. He rides on his skateboard further away from home at a constant speed. In 2 hours, he is able to skateboard 16 miles.

If Evan were to skateboard for 5 hours, how far away would he be from home?

Evan is 43 miles from home.
$2(y-3)=80$
$2 y-6=80 \quad y=43$
How far away from home would Evan be if he skateboarded for x hours?
$\frac{y-3}{x}=\frac{16}{2}$
$x\left(\frac{y-3}{x}\right)=8 x$
$y-3=8 x$
$y=8 x+3$

Andrew rides the exercise bike at the gym at a constant speed. He is able to go 12 niles in 45 minutes.
miles
How many on the bike for 3.5 lours?

How many miles does Andrew bike in x hours?

$$
\frac{y}{x}=\frac{12}{45}
$$

$$
\begin{aligned}
& y=\frac{12}{45} x \\
& y=\frac{4}{15} x
\end{aligned}
$$

$$
y=\frac{4}{25}(16) \times y=16 x
$$

Joe flew in a plane 800 miles from his home to Denver. He got in a rental car and continued his journey away from his home at a constant rate. He was able to drive 360 miles in 8 hours.

How far away from home was Joe after he was driving for 3 hours?

How far away from home would Joe be after x hours in the car?
\qquad
\qquad , Period \qquad
\qquad

INDEPENDENT PRACTICE:

Shannon is running around the track at a constant rate. She can run 4 laps in $5 \frac{1}{2}$ minutes. How long would it take her to run 6 laps?	Colby is swimming in a lake at a steady rate. He swims 900 yards in 21 minutes. How long does it take him to swim 500 yards?
How long does it take Shannon to run x laps?	How long would it take him to swim x yards?
Eric drives 25 miles from his home to a bike trail with his bike on the bike rack attached to his car. He then rides his bike further away from home at a constant rate. He rides his bike 162 miles in 9 hours.	Create your own question here. Share it with the person you're sitting next to.
How far away from home is he after riding his bike for 5 hours?	
How far away from home is Eric after riding his bike for x hours?	

\qquad , Period \qquad
\qquad

Activating Prior Knowledge:

We remember how to calculate unit rates...

James can bike 25 miles in 3 hours. How many miles can he bike in one hour?	Chloe can text 190 words in 3 minutes. How many words can she text each minute?

Closure:

No closure??

TEACHER NOTES:

This might be a review lesson, or maybe not...first chance to introduce two variables. Maps to Module 4, Lesson 10 of ENY.
IM DVD Profits can be group practice problem and closure

