NAME:	
Mr. Rogove	

Math, Peri	od
------------	----

Date:____

LEARNING OBJECTIVE: We will compare the graphs of functions and equations and will determine when a function is a linear function. (G8M5L5)

CONCEPT DEVELOPMENT:

Functions: A function is a rule that assigns each input exactly one output. <u>Stated another way:</u> no *x*-values are repeated.

WHAT IS THE DIFFERENCE BETWEEN A FUNCTION AND AN EQUATION?

An equation can be used to define a function.

<u>Example</u>: If I begin the school year with 300 markers, and every week, we throw away (or lose) 12 markers, the number of markers I have at any given point is a function of how much time has passed. We can express this function as an equation: y = 300 - 12x where y is the number of markers, and x is the number of weeks that have gone by.

The **graph of a function** is the same as the graph of the equation that describes it. If a function is can be described by the equation y = mx, then the ordered pairs of the graph are (x, mx) and the graph of the function is the same as the graph of the equation.

NAME:

Mr. Rogove

Date:_____

OUR FOCUS IS ON LINEAR FUNCTIONS

Linear Functions: A function where the rule is specifically a linear equation in the form y = mx + b.

Example: I have \$30 loaded on my Starbucks card, and each day I get a medium coffee for \$2.00.

This linear function can be represented by the equation: f(x) = -2x + 30, where the amount of money I have remaining on my Starbucks card is a function of how many days I've bought a medium coffee.

1. Read these stories. Which are linear functions? Why?

2. Look at these graphs. Which graphs represent linear functions?

NAME:

Date:____

3. Look at these equations. Which equations represent	t linear functions?
---	---------------------

y = -40x + 600	$y = 3 + \frac{1}{5}x$	$y = x^2 - 1$
yes χ raised $\pm 13^{\frac{3}{2}}$	Yes! X raised	No. X (aisod
$P \circ wer!$	$+ \frac{1^{32}}{5} \text{ power}$	to 2 nd power.

4. Look at th	ese tables. W	hich tables re	present LINE	AR functions?	
Input	Output	Input	Output	Input	Output
2	5 10	2	4	0	-3
4	7 7	3	9	1	1
511	841	4	16	2	6
8+3	11+3	5	25	3	9
10	13	6	36	4	13
Yes. rate	Yes. rate of change		No, because		PECAUSE
15 Constan	, ,	rate of change by		rak of c	handp
	•	not cons	tant. The	I not cor	ictant.

HOW TO TELL IS A FUNCTION IS A LINEAR FUNCTION:

Stories: Add orsubtrat the same amount each time rate of change -> constant. STRAIGHT! Equations: X is raised to 1st power <u>Tables:</u> Constant rate of change.

When rate of change is constant for pairs of inputs and their corresponding outputs, the function is a linear function.

Math	, Period	

Date:____

GUIDED PRACTICE:

Determining Linear Functions

- 1. Read the scenario carefully, study any tables/graphs, and equations.
- 2. Determine if your function is linear.
- 3. Answer any additional questions based on your knowledge of functions.

Study the table below. Study the table below. <u>5</u> Output 0 Input Input Output 3**+**+ 9 2_2 2+1 4+2 2 6+2 15 Does this table represent a linear Does this table represent a linear function? Check at least 3 pairs of inputs function? Check at least 3 pairs of inputs and their corresponding outputs. and their corresponding outputs. $es! = \frac{4}{3} = \frac{4}{3}$ 1851 -3-=------What equation could you use to describe What equation could you use to describe this function? this function? Y===x+5 Y = -3x + 5If you graphed the function, what would If you graphed the function, what would the graph look like? the graph look like? traid STRAIGHTI LING

NAME:_____

Mr. Rogove

Date:_____

Math _____, Period _____

Date:_____

ът	Α.	ъ л	r	
- NI	Δ	IV/L	н	•
1.1	41.	1 * 1	ы	

Math , Period	
---------------	--

Date:_____

INDEPENDENT PRACTICE:

Question 3, 4, and 6 from the problem set can be independent practice.

ACTIVATING PRIOR KNOWLEDGE:

3x + 2 = 5x + 6	6 - 4x = 10x + 9	5x + 2 = 9x - 18
4(5x+6) = 4(3x+2)	-2(-4x+6) = -2(10x+9)	8x + 2 - 3x = 7x - 18 + 2x
$\frac{3x+2}{6} = \frac{5x+6}{6}$	$\frac{10x+9}{5} = \frac{6-4x}{5}$	$\frac{2+5x}{3} = \frac{7x-18+2x}{3}$

CLOSURE:

Exit ticket Lesson 6 for closure.

TEACHER NOTES:

Map to Lesson 7, Mod 5.