\qquad
\qquad , Period \qquad
Mr. Rogove
Date: \qquad

LEARNING OBJECTIVE: We will compare the graphs of functions and equations and will determine when a function is a linear function. (G8M5L5)

CONCEPT DEVELOPMENT:

Functions: A function is a rule that assigns each input exactly one output. Stated another way: no x-values are repeated.

What IS THE DIFFERENCE BETWEEN A FUNCTION AND AN EQUATION?

An equation can be used to define a function.
Example: If I begin the school year with 300 markers, and every week, we throw away (or lose) 12 markers, the number of markers I have at any given point is a function of how much time has passed. We can express this function as an equation: $y=300-12 x$ where y is the number of markers, and x is the number of weeks that have gone by.

The graph of a function is the same as the graph of the equation that describes it. If a function is can be described by the equation $y=m x$, then the ordered pairs of the graph are $(x, m x)$ and the graph of the function is the same as the graph of the equation.
\qquad , Period \qquad
\qquad

OUR FOCUS IS ON LINEAR FUNCTIONS

Linear Functions: A function where the rule is specifically a linear equation in the form $y=m x+b$.
Example: I have $\$ 30$ loaded on my Starbucks card, and each day I get a medium coffee for $\$ 2.00$.
This linear function can be represented by the equation: $f(x)=-2 x+30$, where the amount of money I have remaining on my Starbucks card is a function of how many days I've bought a medium coffee.

1. Read these stories. Which are linear functions? Why?

2. Look at these graphs. Which graphs represent linear functions?

\qquad
\qquad , Period \qquad
Mr. Rogove
Date: \qquad
3. Look at these equations. Which equations represent linear functions?

How to tell is a function is a linear function:

Stories: Add or subtract the same amount each time Graphs: rate of change \rightarrow constant.

STRAIGHT!
 Equations:

x is raised to $1^{ \pm}$pow or
Tables:
Constant rate of change.
When rate of change is constant for pairs of inputs and their corresponding outputs, the function is a linear function.
\qquad , Period \qquad
Mr. Rogove
Date: \qquad

GUIDED PRACTICE:

Determining Linear Functions

1. Read the scenario carefully, study any tables/graphs, and equations.
2. Determine if your function is linear.
3. Answer any additional questions based on your knowledge of functions.

Does this table represent a linear function? Check at least 3 pairs of inputs and their corresponding outputs.

$$
\text { Yes! } \frac{8}{6}=\frac{4}{3}=\frac{4}{3}
$$

What equation could you use to describe this function?

$$
y=\frac{4}{3} x+5
$$

If you graphed the function, what would the graph look like?

Study the table below.

Input	Output
1	$2-3$
2^{+1}	$-1-6$
4^{+2}	$-7-6$
6^{+2}	-13^{-6}

Does this table represent a linear function? Check at least 3 pairs of inputs and their corresponding outputs.
Yest $\quad \frac{-3}{1}=\frac{-6}{2}=\frac{-6}{2}$

What equation could you use to describe this function?

$$
y=-3 x+5
$$

If you graphed the function, what would the graph look like?

\qquad
\qquad , Period \qquad
\qquad

Study the table below.

Input	Output
-1	$2-2$
0^{+1}	0^{+2}
1^{+1}	2^{+2}
2^{+1}	8^{+6}
$3+1$	18^{+10}

Does this table represent a linear function? Check at least 3 pairs of inputs and their corresponding outputs.

$$
\text { No }!\frac{-2}{1} \neq \frac{2}{1}+\frac{10}{1} \neq \frac{6}{1}
$$

What equation could you use to describe this function?

If you graphed the function, what would the graph look like?

Study the table below.

Input	Output
$-2{ }^{+}+5$	4
$3+5$	
$4^{+\dagger}$	96^{+7}
4.5	20.25
5	25

Does this table represent a linear function? Check at least 3 pairs of inputs and their corresponding outputs.

$\frac{5}{5} \neq \frac{7}{1}$

What equation could you use to describe this function?

$$
V=x^{2}
$$

If you graphed the function, what would the graph look like?

\qquad
\qquad , Period \qquad

Date: \qquad
Is the following a graph of a linear function?

Nut

Can you determine the equation for this function?
$y=2(x+1)(x-2)$
Is the following a graph of a linear function?

Hs.
Can you determine the equation for this function?
$-x-1$
\qquad Math \qquad , Period \qquad
Mr. Rogove
Date: \qquad

INDEPENDENT PRACTICE:

Question 3, 4, and 6 from the problem set can be independent practice.

Activating Prior Knowledge:

$3 x+2=5 x+6$	$6-4 x=10 x+9$	$5 x+2=9 x-18$
$4(5 x+6)=4(3 x+2)$	$-2(-4 x+6)=-2(10 x+9)$	$8 x+2-3 x=7 x-18+2 x$
$\frac{3 x+2}{6}=\frac{5 x+6}{6}$	$\frac{10 x+9}{5}=\frac{6-4 x}{5}$	$\frac{2+5 x}{3}=\frac{7 x-18+2 x}{3}$

Closure:

Exit ticket Lesson 6 for closure.

TEACHER NOTES:

Map to Lesson 7, Mod 5.

