\qquad Period \qquad
Mr. Rogove
Date: \qquad
main ideg 2 variable
LEARNING OBJECTIVE: We will summarize bivariate categorical data in two-way tables_(G8M6L9)
VISval

CONCEPT DEVELOPMENT:

We have been looking at relationships between numerical variables.
Now, we will look at relationships between categorical variables
Numerical Variables: Variables that represent data that is measured in numbers. Example: Size of a house. Miles per hour.

Categorical Variables: Variables that represent data evaluated using specific categories or descriptions.
Example: Favorite ice cream flavor, gender, age range. fav. wor
fav. basketball team, type of pet.
Univariate Categorical Data: Data on one variable that is categorical.
One-Way Frequency Table: A way to organize and present univariate categorical data.
Example: 30 students were asked their favorite ice cream flavor.

Ra,w	Ice Cream Flavor	Chocolate	Vanilla	Cookie Dough	Total
	Number of Students	15	9	6	30

Relathve Frequency: A description of the frequency of the occurrences of each categorical data in relation to the whole. A proportion measured by the following fraction: $\frac{\text { frequency }}{\text { total }}$.
Example:

Ice Cream Flavor	Chocolate	Vanilla	Cookie Dough	Total
Number of Students	$.50 \frac{15}{30}$	$.30 \frac{9}{30}$	$.20 \frac{6}{30}$	$1.00 \frac{30}{30}$

Bivariate Categorical Data: Data on two variables that is categorical. This data is easily organized and summarized in a two-way frequency table.
Example: The number of boys and girls who like a specific flavor of ice cream.

		Favorite Ice Cream Flavor			
		Chocolate	Vanilla	Cookie Dough	Total
Gender	Male	7	8	2	17
	Female	8	1	4	13
	Total	15	9	6	30

\qquad
\qquad Period \qquad
Mr. Rogove
Date: \qquad

GUIDED PRACTICE:

Steps for Summarizing Bivariate Data

1. Select the variables you would like to evaluate.
2. Enter in the values for each of the data.
3. Figure out relevant relative frequencies.
4. Answer any questions regarding the data.

Below is a one-way table that reports data collected on how we normally get to school. Answer all questions below.

Mode of Transportation to School	Walk	Skateboard/ Scooter	Bike	In a car	TOTAL
Number of students	$\frac{18}{87}$.207	$\frac{1}{87}$.011	$\frac{21}{87}$

1. What is the relative frequency for each of the different ways to get to school?

Below is a two-way table that reports data collected on gender and cell phone ownership. Answer all questions below.

1. What is the relative frequency for each of the cells above?

freq.
 TOTAL

2. Of the girls, what percent have cell phones? Column relative frequency

$$
35 / 40=.875-87.5 \%
$$

3. Of cell phone owners, what percent are girls? Row relative frequency

$$
35 / 71=49.3 \% \quad .493
$$

\qquad , Period \qquad
Date: \qquad

Below is a two-way table that reports data collected. Answer all questions below

1. What is the relative frequency for each cell in the table above?
2. What percent of the girls ride a skateboard or a scooter to school?

3. Of those who reported they walked to school, what percent were boys?

$$
\frac{11}{18}=61.1 \%=.611
$$

4. If a student is selected at random, how would you predict they would get to school?
In a car!
5. If the randomly selected student was one who walked, do you think they are a boy or a girl?

$$
\begin{aligned}
& 61.190 \text { v. } 38.9 \% \\
& \text { Boy v. girl. }
\end{aligned}
$$

\qquad Math \qquad , Period \qquad
Mr. Rogove
Date: \qquad
Below is a two-way table that reports data collected on gender and the snacks that students like to eat. Answer all questions below.

1. List the relative frequencies for each cell in the table.
2. What is the difference in how you'd determine the proportion of male students who prefer baked goods and the proportion of students who are male AND prefer baked goods? Explain this in words.

Row relative frequency Table relativetirequency
3. What proportion of the female students prefer healthy foods?

4. What proportion of the students who prefer spicy snacks are male?

\qquad
\qquad Period \qquad
Mr. Rogove
Date: \qquad
Below is a two-way table that reports data collected on how people get to school and the snacks they like to eat. Answer all questions below.

1. Write down three interesting observations that you would be willing to share with the class.

- Ibpeople who rode in a car liked salty shacks
- All spicy smackers are drivers

- Most
 popular snack was salty who

2. What is the proportion of students that bike to school like salty snacks?

3. A student is selected at random. They biked to school this morning. Would they rather have a brownie or a Snickers bar? Explain your thoughts.

\qquad Period \qquad Mr. Rogove

Date: \qquad
Below is a two-way table that reports data collected on sports we like to watch and sports we like to play. Answer the questions below.

1. Which sport is the most popular to play?

$$
\text { Soccer } 39 / 87.449
$$

2. Which sport is the most popular to watch?

$$
25 / 87 \quad .253
$$

Ba. Of those who said soccer was their favorite sport to PLAY, what percent also said it was their favorite sport to WATCH?

$$
20 / 39 \text { SB S S K . } 3 \% \text { relative frog. }
$$

3b. Of those who said soccer was their favorite sport to WATCH, what percent also said is was their favorite sport to PLAY?

$$
20 / 25 \quad 80 \%
$$

3c. What conclusions can you draw from this?
4. Create row relative frequencies for the favorite sport to PLAY.
\qquad , Period \qquad
\qquad

INDEPENDENT PRACTICE:

If time, independent practice will be to create their own two-way table with the data collected.

Activating Prior KnOWLEDGE:

We understand percentages and proportions.

A bag of M\&Ms has 300 candies in it. 70	If you randomly selected 20 M\&Ms from
are red, 30 are blue, 60 are green, 50 are	
brown and the rest are yellow. What is	
the percentage of yellow M\&Ms in the	be blue?
bag?	

CLOSURE:

Why can't you graph these relationships on a coordinate plane?

Notes:

This maps to lesson 13 from Grade 8, Module 6.

