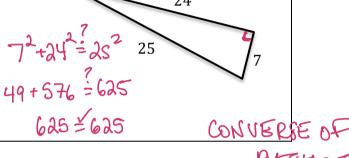

Mr. Rogove

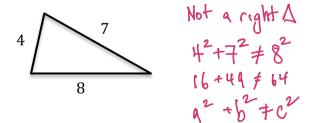
Date:_____


LEARNING OBJECTIVE: We will use the Pythagorean Theorem to introduce the concept of irrational numbers. (G8M7L1)

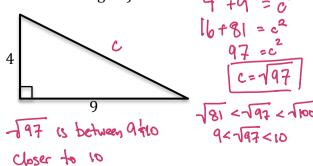
ACTIVATING PRIOR KNOWLEDGE:

We know what the Pythagorean theorem is AND its converse.

How can we prove the triangle below is a right triangle?



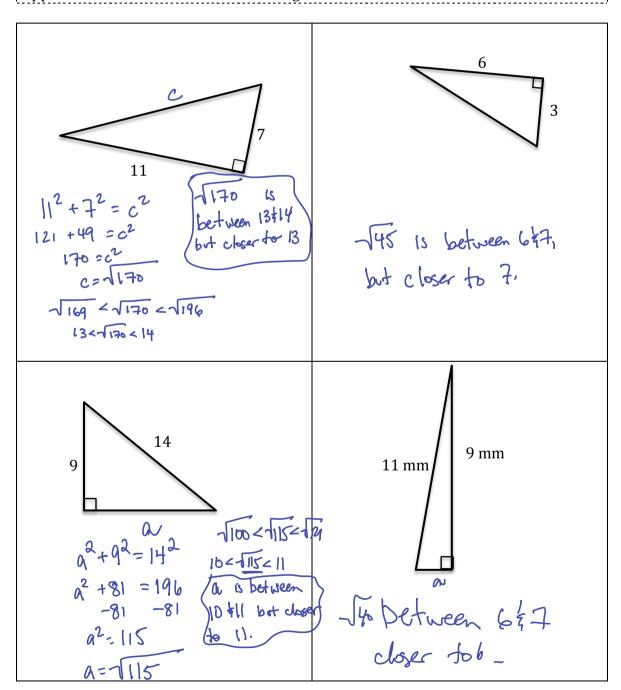
CONCEPT DEVELOPMENT:


Pythagorean Theorem: If the lengths of the legs of a right triangle are a and b, and the length of the hypotenuse is c, then $a^2 + b^2 = c^2$.

<u>Converse of the Pythagorean Theorem:</u> If the sum of the squares of the lengths of two shorter legs of a triangle equals the square of the length of the longest leg, the triangle is a right triangle.

What can we say about the following triangle?

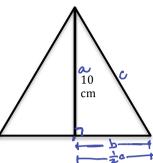
How can we figure out the length of the missing side of this triangle? (estimate as between 2 integers) $4^2 + 9^2 = 6^2$


Mr. Rogove

Date:_____

GUIDED PRACTICE:

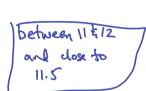
Steps for Determining The Length of Missing Sides of Right Triangles


- 1. Recall the Pythagorean Theorem $(a^2 + b^2 = c^2)$.
- 2. Substitute the length of the given side into the theorem.
- 3. Solve for the missing side length.
- 4. If the square of the missing side length is NOT a perfect square, estimate its approximate value as between two integers.

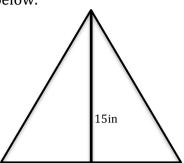
Mr. Rogove

Date:_____

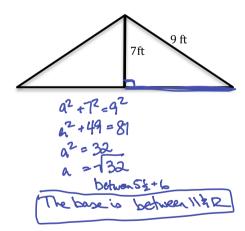
Find the side length of the **equilateral** triangle below.

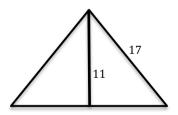

$$10^{2} (\frac{1}{2}c)^{2} = c^{2}$$

$$100 + \frac{1}{4}c^{2} = c^{2}$$


$$\frac{4}{3} (100) = (\frac{3}{4}c^{2})\frac{4}{3}$$

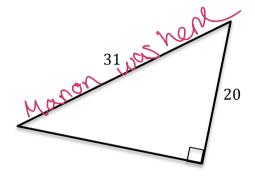
$$133\frac{1}{3} = c$$


$$C = \sqrt{133\frac{1}{3}}$$


Find the side length of the **equilateral** triangle below.

Find the length of the base of the **isosceles** triangle below.

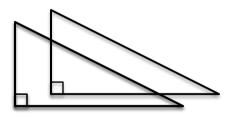
Find the length of the base of the **isosceles** triangle below.


NAME:	Math, Period	
Mr Rogove	Date·	

INDEPENDENT PRACTICE:

Problem Set from Lesson 1, Mod 7 Grade 8 will be independent practice. Should not take too long.

CLOSURE:


Find the length of the missing side

Notes:

This aligns to Lesson 1, Module 7 Incorporate Estimating Square Roots NCTM?

Need to do the Module 2 lessons on Pythagorean theorem before this one for Math 8.

