\qquad
\qquad Period \qquad

Mr. Rogove
Date: \qquad
LEARNING OBJECTIVE: We will use the Pythagorean Theorem to introduce the concept of irrational numbers. (G8M7L1)

Activating Prior Knowledge:

We know what the Pythagorean theorem is AND its converse.
Find the length of the missing side of the
triangle below.

$a^{2}+b^{2}=c^{2}$$\quad$| How can we prove the triangle below is a |
| :--- |
| right triangle? |

CONCEPT DEVELOPMENT:

Pythagorean Theorem: If the lengths of the legs of a right triangle are a and b, and the length of the hypotenuse is c, then $a^{2}+b^{2}=c^{2}$.

Converse of the Pythagorean Theorem: If the sum of the squares of the lengths of two shorter legs of a triangle equals the square of the length of the longest leg, the triangle is a right triangle.

What can we say about the following triangle?

How can we figure out the length of the missing side of this triangle? (estimate as between 2 integers)
$\begin{aligned} & 4^{2}+9^{2}=c^{2} \\ & 16+81\end{aligned}=c^{2}$
$8+<97=c^{2}<100$
$\sqrt{81}<c=\sqrt{97}<\sqrt{100}$
c is between 9\%io. Closer to 10 .
\qquad
\qquad , Period \qquad
Mr. Rogove
Date: \qquad

GUIDED PRACTICE:
Steps for Determining The Length of Missing Sides of Right Triangles

1. Recall the Pythagorean Theorem $\left(a^{2}+b^{2}=c^{2}\right)$.
2. Substitute the length of the given side into the theorem.
3. Solve for the missing side length.
4. If the square of the missing side length is NOT a perfect square, estimate its approximate value as between two integers.

$$
\begin{aligned}
& c=\sqrt{170} \\
& 7^{2}+11^{2}=c^{2} \\
& 49+121=c^{2} \\
& 169<170=c^{2}<196
\end{aligned}
$$

C is between $13 \frac{1}{3} 14$, closer to 13

c is between $6 \frac{17}{}$, but closer +7 .

\qquad
bis between $6 \frac{1}{4} 7$, bat closer to 6 .
\qquad
\qquad
\qquad

Mr. Rogove
Date: \qquad

Find the side length of the equilateral triangle below. $\begin{aligned} & \left(\frac{1}{2} x\right)^{2}+10^{2}=x^{2} \\ & \frac{1}{4} x^{2}+100=1 x^{2} \\ & -\frac{1}{4} x^{2} \\ & \left(100=\frac{-\frac{1}{4} x^{2}}{4} x^{2}\right) \frac{4}{3} \\ & \\ & x \text { is }<133 \frac{1}{3}=x^{2}<144 \end{aligned}$ x is between 11 is12 and closs to the middle.	Find the side length of the equilateral triangle below.
Find the length of the base of the isosceles triangle below.	Find the length of the base of the isosceles triangle below.
bis between 5 ' $9 b$, but closerto b. The baxe is betwen 1 and	

\qquad Period \qquad
\qquad

INDEPENDENT PRACTICE:

Problem Set from Lesson 1, Mod 7 Grade 8 will be independent practice. Should not take too long.

CLOSURE:

Find the length of the missing side

NOTES:

This aligns to Lesson 1, Module 7 Incorporate Estimating Square Roots NCTM?
Need to do the Module 2 lessons on Pythagorean theorem before this one for Math 8.

