NAME.	
INAME:	_

Mr. Rogove

Date:_____

LEARNING OBJECTIVE: We will use the Pythagorean Theorem to introduce the concept of irrational numbers. (G8M7L1)

ACTIVATING PRIOR KNOWLEDGE:

We know what the Pythagorean theorem is AND its converse.

CONCEPT DEVELOPMENT:

Pythagorean Theorem: If the lengths of the legs of a right triangle are *a* and *b*, and the length of the hypotenuse is *c*, then $a^2 + b^2 = c^2$.

Converse of the Pythagorean Theorem: If the sum of the squares of the lengths of two shorter legs of a triangle equals the square of the length of the longest leg, the triangle is a right triangle.

What can we say about the following triangle?

How can we figure out the length of the missing side of this triangle? (estimate as between 2 integers)

Mr. Rogove

Math _____, Period _____

Date:_____

GUIDED PRACTICE:

Steps for Determining The Length of Missing Sides of Right Triangles

- 1. Recall the Pythagorean Theorem $(a^2 + b^2 = c^2)$.
- 2. Substitute the length of the given side into the theorem.
- 3. Solve for the missing side length.

4. If the square of the missing side length is NOT a perfect square, estimate its approximate value as between two integers.

Mr. Rogove

Date:_____

NAME:_____

od
od

Mr. Rogove

Date:_____

INDEPENDENT PRACTICE:

Problem Set from Lesson 1, Mod 7 Grade 8 will be independent practice. Should not take too long.

CLOSURE:

Find the length of the missing side

NOTES:

This aligns to Lesson 1, Module 7 Incorporate Estimating Square Roots NCTM?

Need to do the Module 2 lessons on Pythagorean theorem before this one for Math 8.

