Name: \qquad
\qquad , Period \qquad
Mr. Rogove
Date: \qquad

LEARNING OBJECTIVE: We will apply the Pythagorean Theorem and its converse to solve problems. (G8M7L10)

Activating Prior Knowledge:

We know how to apply the Pythagorean Theorem to find the lengths of sides of right triangles.

CONCEPT DEVELOPMENT:

The Converse of the Pythagorean Theorem

If the lengths of three sides of a triangle, a, b and c satisfy $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle, and furthermore, the side of length c is opposite the right angle (it's the hypotenuse).

Non-Example: Can we prove that the triangle below is a right triangle?

Not aright $\Delta b / c a^{2}+b^{2} \neq c^{2}$
\qquad Math \qquad Period \qquad
Mr. Rogove
Date: \qquad

GUIDED PRACTICE:

Steps for Identifying a Right Triangle

1. Identify the lengths of the sides of a triangle.
2. Determine if the sum of the squares of the lengths of the 2 shorter sides is equal to the square of the longest sides.
2a. If yes to above, then you triangle is a right triangle, and the longest side is the hypotenuse, located opposite the right angle.
2 b . If no to above, then you do not have a right triangle.

Is the triangle with side lengths of 3 inches, 8 inches and $\sqrt{73}$ inches a right triangle? Why or why not? $\begin{aligned} 3^{2}+8^{2} & \stackrel{?}{=}(\sqrt{73})^{2} \\ 9+64 & =73 \\ 73 & =73 \end{aligned}$	Is the triangle with side lengths of 1 meter, 4 meters, and $\sqrt{17}$ meters a right triangle? Why or why not? $\begin{array}{ll} 1^{2}+4^{2} \stackrel{?}{=}(\sqrt{17})^{2} \quad \text { Yes we have } \\ 1+16 \stackrel{?}{=} 17 & \text { a ryht } \Delta \\ 17 \stackrel{n}{=} 17 & \text { becaose } a^{2}+b^{2}=c^{2} \end{array}$
What is the length of the unknown side that would make this a right triangle?	What is the length of the unknown side that would make this a right triangle? $\begin{aligned} q^{2}+q^{2} & =c^{2} \\ 81+81 & =c^{2} \\ 162 & =c^{2} \end{aligned}$
Is the triangle with lengths of 9 feet, 9 feet, and $\sqrt{175}$ a right triangle? Why? Why not? No	Is the triangle with lengths of 2 centimeters, 6 centimeters, and $3 \sqrt{5}$ centimeters a right triangle? Why or why not? $\begin{aligned} 2^{2}+6^{2} & =(3 \sqrt{5})^{2} \\ 4+36 & =9.5 \\ 40 & =45 \end{aligned}$

Name:
Math \qquad , Period \qquad
Mr. Rogove
Date: \qquad

INDEPENDENT PRACTICE:

Problem Set for Independent Practice?? Students DO have to approximate to tenths place!!

Closure:

Give exit ticket for lesson 16 module 7 grade 8

NOTES:

Lesson maps to Lesson 16, Grade 8, Module 7

