Name: \qquad
\qquad , Period \qquad
\qquad

LEARNING OBJECTIVE: We will use the Pythagorean Theorem to determine the distance between two points on the coordinate plane. (G8M7L11)

Activating Prior Knowledge:

We can use the Pythagorean Theorem to find the length of missing sides of a right triangle.

CONCEPT DEVELOPMENT:

If we had a coordinate plane could we use the Pythagorean Theorem somehow to help us find the distance of the hypotenuse of a right triangle? How??

The Distance Formula:

$$
\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}=c
$$

\qquad , Period \qquad
Mr. Rogove
Date: \qquad

GUIDED PRACTICE:

Steps for Finding the Distance Between 2 Points on the Coordinate Plane

1. Draw a right triangle, using the given diagonal length as your hypotenuse.
2. Use the Pythagorean Theorem $\left(a^{2}+b^{2}=c^{2}\right)$ to determine the length of the hypotenuse.
3. Estimate the hypotenuse to the nearest tenth of a unit.

Find the distance between A and B.

12.8
$\times 12.8$
163.84

Find the distance between A and B.

$\overline{A B}=\sqrt{34}$

Find the distance between A and B.

$8^{2}+13^{2}=\overline{A B}{ }^{2}$
$A B^{2}=233$
$\overline{A B}=\sqrt{233}$
$A B \backsim 15.3$

Name: \qquad
\qquad , Period \qquad
\qquad

Is the triangle formed by the 3 points a right triangle? Prove with Pythagorean Theorem.

$(\sqrt{20}):(\sqrt{?})^{2}=(10)^{2}$

Is the triangle formed by the 3 points a right triangle? Prove with the Pythagorean Theorem.

CLOSURE:

IS this a right triangle? How do you know?

Name: \qquad
Mr. Rogove
Math \qquad , Period \qquad

INDEPENDENT PRACTICE:

Find the Distance between the two points.

Date: \qquad

Find the distance between the two points.

Is this a right triangle? Why or why not? Prove with Pythagorean Theorem.

\qquad
Mr. Rogove
Date: \qquad

NOTES: Lesson 17, Module 7 Grade 8

