N	٨	N	IE	
IN.	А	IV.	IC	÷.,

Math, Period

Mr. Rogove

Date:_____

LEARNING OBJECTIVE: We will estimate the value of square roots as between two integers. (G8M7L2)

CONCEPT DEVELOPMENT:

The Unit Square

Positive Square Roots

A positive number whose square is equal to a positive number *b* is denoted by the symbol \sqrt{b} . The symbol \sqrt{b} is automatically denotes a positive number. The number \sqrt{b} is called the positive square root of *b*.

Example:Non-Example $\sqrt{9} = 3$ $\sqrt{9} = -3$

What is the positive square root of 25? 5

Estimating on a Number Line

Perfect squares have square roots that are equal to integers, but there are MANY numbers that are not perfect squares.

N	A	M	E:
			···-

Mr. Rogove

Date:_____

GUIDED PRACTICE: Steps for Determining Square Roots 1. Determine if the number you are finding the square root for is a perfect square. IF so, identify the positive square root. 2. If the number is not a perfect square, identify the two integer numbers it falls between and determine which one is a better approximation.

3. Use a calculator to check your approximation.

NAME:_____

Math _	, Period	
--------	----------	--

Mr. Rogove

Date:_____

INDEPENDENT PRACTICE: Complete the following.

Complete the following.	
$\sqrt{100}$ $\sqrt{115} \neq \sqrt{121}$	√484 √500 ≠ √529
close to 11	లా ని
	close tr-22
$\sqrt{281} \sqrt{300} = \sqrt{324}$	$\sqrt{16}$ $\sqrt{19} = 725$
17 18	$\sqrt{16}$ $\sqrt{19} = \sqrt{25}$ 4 5
c loser to 17	closer + 4
$\sqrt{222} = \sqrt{225}$	$\sqrt{\frac{81}{9}}$ $\sqrt{89} = \sqrt{100}$
$\sqrt{196} \sqrt{222} = \sqrt{225}$ $14 15$	9 lo
closert 15	closer to 9
$\sqrt{220} = a \#$ between 15 and 16 (but closer to 15)	$\sqrt{320} = a \#$ between 17 and 18 (but closer to 18)
$\sqrt{577} = a \# between 24 and 25$ (but closer to 24)	$\sqrt{26} = a \#$ between 5 and 6 (but closer to 5)
$\sqrt{109} = a \# between 10 and 11$ (but closer to 10)	$\sqrt{12\sigma}$ = a # between 10 and 11 (but closer to 11)

Ν	A	М	E	•
1.4		1.1	-	۰.

Math, Period	
--------------	--

Mr. Rogove

Date:_____

ACTIVATING PRIOR KNOWLEDGE:

We know our square roots of perfect squares. Simplify if possible.

$\sqrt{324}$	$\sqrt{196}$

CLOSURE:

Give Exit Ticket for Lesson 2.

NOTES:

This maps to lesson 2 from Mod 7, Grade 8. Do NCTM activity with this lesson?

$$|^{2} = | \qquad 14^{2} = 1916$$

$$2^{2} = 4 \qquad 15^{2} = 225$$

$$3^{2} = 9 \qquad 16^{2} = 2516$$

$$4^{2} = 16 \qquad 17^{2} = 289$$

$$5^{2} = 25 \qquad 18^{2} = 324$$

$$6^{2} = 36 \qquad 19^{2} = 361$$

$$7^{2} = 49 \qquad 20^{2} = 400$$

$$8^{2} = 64 \qquad 21^{2} = 411$$

$$4^{2} = 81 \qquad 22^{2} = 491$$

$$4^{2} = 81 \qquad 22^{2} = 484$$

$$10^{2} = 100 \qquad 23^{2} = 529$$

$$1^{2} = 144 \qquad 25^{2} = 576$$

$$12^{2} = 169$$