\qquad
\qquad , Period \qquad

Mr. Rogove
Date: \qquad

LEARNING OBJECTIVE: We will estimate the value of square roots as between two integers. (G8M7L2)

CONCEPT DEVELOPMENT:

The Unit Square

Positive Square Roots

A positive number whose square is equal to a positive number b is denoted by the symbol \sqrt{b}. The symbol \sqrt{b} is automatically denotes a positive number. The number \sqrt{b} is called the positive square root of b.

Example:	$\underline{\text { Non-Example }}$
$\sqrt{9}=3$	$\sqrt{9}=-3$

What is the positive square root of 25 ? 5

Estimating on a Number Line

Perfect squares have square roots that are equal to integers, but there are MANY numbers that are not perfect squares.
\qquad
\qquad , Period \qquad
Mr. Rogove
Date: \qquad
GUIDED PRACTICE:
Steps for Determining Square Roots

1. Determine if the number you are finding the square root for is a perfect square. IF so, identify the positive square root.
2. If the number is not a perfect square, identify the two integer numbers it falls between and determine which one is a better approximation.
3. Use a calculator to check your approximation.

\qquad
\qquad , Period \qquad
Mr. Rogove
Date: \qquad

INDEPENDENT PRACTICE:
Complete the following.

$\begin{gathered} \sqrt{100} \sqrt{115} * \sqrt{121} \\ \text { close to } 11 \end{gathered}$	$\begin{array}{rr} \sqrt{484} & \sqrt{500}=\sqrt{529} \\ 22 & 23 \end{array}$ closer to 22
$\begin{gathered} \sqrt{289} \quad \sqrt{300}=\sqrt{324} \\ 17 \\ \text { c loser to } 18 \end{gathered}$	$\begin{array}{cc} \sqrt{16} & \sqrt{19}=\sqrt{25} \\ 4 & 5 \\ \text { closert } & 4 \end{array}$
$\begin{array}{cc} \sqrt{196} & \sqrt{222}=\sqrt{225} \\ 14 & 15 \\ & \text { closect } 15 \end{array}$	$\begin{array}{cc} \sqrt{81} & \sqrt{89}=\sqrt{100} \\ 9 & 10 \\ & \text { closer to } 9 \end{array}$
$\sqrt{226}=\underset{\text { (but closer to 15) }}{\text { a } \# \text { between } 15 \text { and } 16}$	$\sqrt{320}=\underset{\text { (but closer to 18) }}{\text { a }} \text { \# and } 18$
$\sqrt{577}=\underset{\substack{\text { (but closer to } 24)}}{\text { a } \# \text { between } 24 \text { and } 25}$	$\sqrt{26}=\underset{\substack{\text { aut closer to } 5 \text {) }}}{\text { a \# between } 5 \text { and } 6}$
$\sqrt{109}=\underset{\substack{\text { (but closer to 10) }}}{\text { a } \# \text { between } 10 \text { and } 11}$	$\sqrt{120}=\underset{(\text { but closer to } 11)}{ } \text { a between } 10 \text { and } 11$

\qquad , Period \qquad
Date: \qquad

Activating Prior Knowledge:

We know our square roots of perfect squares. Simplify if possible.

$\sqrt{324}$	$\sqrt{196}$

Closure:

Give Exit Ticket for Lesson 2.

NOTES:

This maps to lesson 2 from Mod 7, Grade 8.
Do NCTM activity with this lesson?

$$
\begin{array}{ll}
1^{2}=1 & 14^{2}=196 \\
2^{2}=4 & 15^{2}=225 \\
3^{2}=9 & 1 b^{2}=256 \\
4^{2}=16 & 17^{2}=289 \\
5^{2}=25 & 18^{2}=324 \\
b^{2}=36 & 19^{2}=361 \\
7^{2}=49 & 20^{2}=400 \\
8^{2}=64 & 21^{2}=441 \\
9^{2}=81 & 22^{2}=484 \\
10^{2}=100 & 23^{2}=529 \\
11^{2}=121 & 24^{2}=576 \\
12^{2}=144 & 25^{2}=625 \\
13^{2}=169 &
\end{array}
$$

