\qquad
\qquad Period \qquad
\qquad

LEARNING OBJECTIVE: We will solve equations involving square roots and cube roots. (G8M7L3)

CONCEPT DEVELOPMENT:

Find a Rule Part 1		Find a Rule Part 2	
1	1	1	1
2	4	2	8
3	9	3	27
9	81	5	125
11	121	6	216
15	225	11	1331
7	49	4	64
10	100	10	1000
12	144	7	343
13	169	14	2,744
m	m^{2}	p	p^{3}
\sqrt{n}	n	$\sqrt[3]{8}$	q

Cube Roots: The cube root of a number, x, is the number, y which satisfy the equation $x=y^{3}$. The notation we use is as follows: $\sqrt[3]{x}=y$
Example: $8=2^{3}$ and $\sqrt[3]{8}=2$
index
The properties of equality extend to square roots and cube roots.
Example: If $x^{2}=36$, then $\sqrt{x^{2}}=\sqrt{36}$
\qquad
\qquad , Period \qquad
Mr. Rogove
Date: \qquad
GUIDED PRACTICE:
Steps for Solving Equations With Square Roots and Cube Roots

1. If necessary, isolate the term that is squared or cubed.
2. Take the square root or cube root of both sides of the equation and find the positive value that makes the equation true.
3. Check your solution.

\qquad Period \qquad
Mr. Rogove
Date:

$x^{3}=343^{-1}$	$x^{3}=1000^{-1}$
$x^{2}-18=63$	
$x^{3}+19=144$	

\qquad , Period \qquad

Mr. Rogove

Date: \qquad

INDEPENDENT PRACTICE:

N/A

Activating Prior KnOWLEDGE:

Simplify:	$2^{-3}=$	Simplify:
		$4^{-2}=$

CLOSURE:

Is 6 a solution for the following equation?

$$
x^{2}=5 x+4
$$

Notes:

Homework could be Khan Cube Roots, This aligns with lesson 3. Can also give PoW quilts for homework.

