\qquad
\qquad , Period \qquad
Mr. Rogove
Date: \qquad

LEARNING OBJECTIVE: We will simplify square roots. (G8M7L4)
Activating Prior Knowledge:

How do we know that $\sqrt{66}=6$?
Because $6 \times 6=36$

$$
\begin{gathered}
36 \text { is a perfect } \\
\text { square }
\end{gathered}
$$

How do we know that $\sqrt{16}=4$?

$$
\text { Because } 4 \times y=16
$$

$$
\begin{aligned}
16 \text { is a perfect } \\
\text { square }
\end{aligned}
$$

taking the square root of any perfect Square
RESULTS AN INTEGER
Concept Development:
Multiplication Property of Square Roots:

$$
\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}
$$

$$
\sqrt{5} \cdot \sqrt{6}=\sqrt{30}
$$

Examples:

$$
\begin{aligned}
&\sqrt{56}) \\
& \sqrt{8 \cdot 7}= \sqrt{8} \cdot \sqrt{7} \\
& \sqrt{2^{3} \cdot \sqrt{7}}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{28} \cdot \sqrt{2}=\sqrt{8} \cdot \sqrt{7} \\
& \sqrt{14} \cdot \sqrt{4} \\
& 2 \sqrt{14}
\end{aligned}
$$

$$
\sqrt{124}=\sqrt{4} \cdot \sqrt{31}
$$

$\sqrt{40}=\sqrt{5} \cdot \sqrt{8} \quad$ Remember this important item:

$$
\begin{aligned}
& \sqrt{5} \cdot \sqrt{4} \cdot \sqrt{2}=2 \sqrt{10} \\
& \text { Exam le: } \sqrt{144}=\sqrt{12^{2}}=12
\end{aligned}
$$

$$
\sqrt{x^{2}}=x
$$

$$
\begin{aligned}
\sqrt{36}=\sqrt{(6)} & =\sqrt{36} \\
(\sqrt{6})^{2} & =\sqrt{6} \cdot \sqrt{6}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{36}=\sqrt{6} \cdot \sqrt{6} \\
& =(\sqrt{6})^{2} \\
& \sqrt{12} \cdot \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3} \cdot \sqrt{3} \\
& 2 \cdot 3=6
\end{aligned}
$$

\qquad
\qquad Period \qquad

Mr. Rogove
Date: \qquad

GUIDED PRACTICE:

Steps for Simplifying Square Roots

1. Look at the number in the radical sign. Is it a perfect square?
2. If not a perfect square, can we rewrite the number as a factor of other numbers, looking for perfect squares (i.e. 4, 9, 16, 25, etc.)
3 . Rewrite the square root as a product of its factors.
3. Simplify the perfect squares.

\qquad , Period \qquad
Mr. Rogove
Date: \qquad

Solve 2 different ways $\begin{gathered} \sqrt{256} \\ \sqrt{16^{2}} \\ \sqrt{16} \cdot \sqrt{16}=16 \\ \sqrt{64} \cdot \sqrt{4} \\ 8 \cdot 2=16 \\ (\sqrt{2} \cdot \sqrt{2} \cdot \sqrt{[2} \cdot \sqrt{2} \cdot(\sqrt{2} \cdot \sqrt{2}) \cdot(\sqrt{2} \cdot \sqrt{2}) \\ 2 \end{gathered} \frac{2}{2} \quad 2=16$	Solve 2 different ways $\sqrt{1024}$
Solve 2 different ways $\sqrt{288}$	Solve 2 different ways $\sqrt{1152}$
Find the unknown side length. Simplify your answer!	Find the unknown side length. Simplify your answer!

\qquad , Period \qquad
Mr. Rogove
Date: \qquad

INDEPENDENT PRACTICE:
$\left.\begin{array}{|l|l|}\hline \text { Simplify as much as possible: } \\ \sqrt{1800} & \text { Simplify as much as possible: } \\ \sqrt{660}\end{array}\right]$
\qquad
\qquad

Closure:

Simplify $\sqrt{2420}$

Notes:

This maps to Lesson 4, module 7, grade 8.
Homework is Pythagorean theorem on Khan Academy, and simplifying radicals 1 and 2 on Khan academy

Can be optional for math 8 students.

