\qquad , Period \qquad
\qquad

LEARNING OBJECTIVE: We will find positive solutions for equations involving square roots and cube roots. (G8M7L5)

Activating Prior Knowledge:

We can solve linear equations (solve for x)

$$
\begin{gathered}
-2(5 x-3)=x+28 \\
-10 x+6=x+28 \\
-x \quad-x \\
-11 x+6=28 \\
-6-6 \\
\frac{-11 x}{-11}=\frac{22}{-11} \\
x=-2
\end{gathered}
$$

$$
\begin{aligned}
27 x-15 & =6 x-78 \\
-6 x \quad & 6 x
\end{aligned}
$$

$$
21 x-15=-78
$$

$$
+15 \times 15
$$

$$
\frac{21 x}{21}=\frac{-63}{21}
$$

$$
x=-3
$$

Concept Development:

Solving non-linear equations has some of the same elements...our goal remains the same in solving equations:

We can simplify the expressions until we have the form of $x^{2}=p$ or $x^{3}=p$ and then take the square root or cube root of both sides of the equation to solve for x.

Example:

$$
\begin{aligned}
x^{3}+9 x & =\frac{1}{2}(18 x+54) \\
x^{3}+9 x & =9 x+27 \\
\sqrt[3]{x^{3}} & =\sqrt[3]{27} \\
x & =3
\end{aligned}
$$

\qquad , Period \qquad
\qquad

GUIDED PRACTICE:

Steps to Solving Equations Involving Square Roots and Cube Roots

1. Use the properties of equality to transform the equation to the form of $x^{2}=$ p or $x^{3}=p$.
2. Solve for x by taking the square root (or cube root) of both sides of the equation.
3. Check your work by substituting the positive solution for your unknown value into the exercise.

$\begin{array}{rl} x^{2}+4 x & =4(x+16) \\ x^{2}+4 & x=24 x+64 \\ x^{2} & =64 \\ x & =8 \end{array}$	$x^{2}-14=5 x+67-5 x$ $\begin{gathered} x^{2}-14=67 \\ +14 \end{gathered}$ $x^{2}=81$ $\sqrt{x^{2}}=\sqrt{81}$ CHECK $x=9$ $\begin{aligned} & 9^{2}-14=S(9)+67-S(9) \\ & 81-14=45+67-45 \\ & 67=67 \end{aligned}$
$\text { * } \quad \begin{aligned} x(x+4)-3 & =2(2 x+39) \\ x^{2}+4 x-3 & =4 x+78 \\ +3 & +3 \\ x^{2}+4 x & =4 x+81 \\ -4 x & -4 x \\ x^{2} & =81 \\ \sqrt{x^{2}} & =\sqrt{81} \\ x & =9 \end{aligned}$	$\text { * } \begin{gathered} x(x-1)=121-x \\ x^{2}-1 x=121-x \\ +1 x \\ x^{2}=121 \\ x=11 \end{gathered}$

\qquad , Period \qquad
Mr. Rogove
Date: \qquad
A square yard has a side length $2 x-1$ and an area of 121 square yards. What is the value of x ?

A square has a side length of $3 x$ and an area of 324 square inches. What is the value of x ?

$$
\sqrt{(3 x)^{2}}=\sqrt{324}
$$

$$
\begin{aligned}
& \frac{\beta x}{3}=\frac{18}{3} \\
& x=6
\end{aligned}
$$

$$
\begin{aligned}
& (3 x)^{2}=32 y \\
& \frac{p x^{2}}{8}=\frac{34 y}{8} \\
& \frac{x^{2}}{}=\frac{136}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[3]{\left.(4 x)^{3}=\sqrt[3 x)^{3}\right]{1728}=1,728} \\
& 4 x=12 \\
& x=3)^{\frac{64}{x}}=\frac{6728}{64} \\
& x^{3}=27 \\
& x=3
\end{aligned}
$$

$$
\begin{gathered}
-3 x^{3}+14=-67 \\
\frac{-3 x^{3}}{-3}=\frac{-81}{-3} \\
\sqrt[3]{x^{3} \sqrt[3]{27}} \\
x=3
\end{gathered}
$$

\qquad
\qquad , Period \qquad
Mr. Rogove
Date: \qquad

\qquad , Period \qquad

Mr. Rogove
Date: \qquad

Independent Practice:

No ind Prac. Can give out homework

CLOSURE:

Solve for x :

$$
\frac{1}{2}\left(2 x^{2}+10\right)=30
$$

Notes:

Aligns to lesson 5 grade 8 module 7. Homework should be problem set from lesson 5.

