Mr. Rogove

Date:_____

LEARNING OBJECTIVE: We will differentiate between rational and irrational numbers. (G8M7L6)

CONCEPT DEVELOPMENT:

CONCEPT DEVELOPMENT.		
Real Numbers		<u>Imaginary</u> <u>Numbers</u>

Rational Numbers: Any number that can be expressed as a fraction $\frac{p}{q}$ where p and q are both integers and $q \neq 0$.

<u>Example</u>: 4.3, $\frac{5}{2}$, $-\frac{1}{135}$, 68. $\overline{9}$

<u>Finite Decimals:</u> A subset of rational numbers which have terminating decimals. Written as fractions, the denominators are products of only 2's and 5's.

<u>Example</u>: $\frac{3}{32}$, 1.05, 4.253

Repeating Decimals: A subset of rational numbers that have infinite decimals that repeat.

<u>Example</u>: $\frac{8}{9}$, $\frac{72}{93}$, 0.4545454545

<u>Irrational Numbers</u>: The set of numbers that have infinite decimals that **DO NOT** repeat.

Example: $e, \pi, \sqrt{8}, \sqrt[3]{25}$

NAME:	Math, Period
Mr. Rogove	Date:

GUIDED PRACTICE:

Steps for Converting Fractions to Decimals

- 1. Determine if the fraction will be a finite or a repeating decimal.
- 2. If finite, multiply the fraction by factors of 2 and 5 until the denominator is equal to $(2\times5)^n=10^n$.
- 3. Rewrite the fraction as a decimal.

$\frac{43}{64}$	$\frac{7}{80}$
20	27
$\frac{29}{125}$	$\frac{37}{40}$
7	15
1250	$\frac{15}{128}$

NAME:

Math _____, Period _____

Mr. Rogove

Date:_____

Steps for Rewriting Decimals (Finite and Infinite) in Expanded Form Using the Powers of 10

- 1. Represent each digit as a number with a denominator that is a power of 10.
- 2. Determine the decimal is finite (terminating) or infinite.
- 3. If required, draw number lines to represent the decimal.

0.253	0.3765
0	0
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
$0.8\overline{3}$	0.83
0	0
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

NAME:

Math _____, Period _____

Mr. Rogove

Date:_____

INDEPENDENT PRACTICE:

Rewrite Using the Powers of 10 and represent on a number line

$$0.\overline{573}$$

0.985

 $0.\overline{1422}$

0.14159

Math _____, Period _____

Mr. Rogove

Date:_____

ACTIVATING PRIOR KNOWLEDGE:

We can rewrite fractions as decimals

$\frac{3}{10^3}$	$\frac{14}{10^4}$

CLOSURE:

Does the fraction $\frac{22}{7}$ have a repeating or terminating decimal? How do you know?

Notes:

This maps to Lesson 7 and 8 from Module 7 Grade 8 $\,$