\qquad
\qquad , Period \qquad

Mr. Rogove
Date: \qquad
LEARNING OBJECTIVE: We will differentiate between rational and irrational numbers. (G8M7L6)

Concept Development:

Real Numbers		Imaginary
	IRRATIONAL $\psi \approx 3.14159 \ldots$ $\sqrt{82}$ e~2.71828... $\sqrt[3]{25}$	$\begin{aligned} i & =\sqrt{-1} \\ i^{2} & =-1 \end{aligned}$

Rational Numbers: Any number that can be expressed as a fraction $\frac{p}{q}$ where p and q are both integers and $q \neq 0$.
Example: 4.3, $\frac{5}{2},-\frac{1}{135}, \quad 68 . \overline{9}$

RAT Finite Decimals: A subset of rational numbers which have terminating decimals.
Written as fractions, the denominators are products of only 2's and 5's.
Example: $\frac{3}{32}, 1.05,4.253$

Repeating Decimals: A subset of rational numbers that have infinite decimals that repeat.
Example: $\frac{8}{9}, \frac{72}{93}, \quad 0.4545454545 \ldots$.

Irrational Numbers: The set of numbers that have infinite decimals that DO NOT repeat.
Example: e, $\pi, \sqrt{8}, \sqrt[3]{25}$
\qquad Math \qquad Period \qquad

Date: \qquad

GUIDED PRACTICE:

Steps for Converting Fractions to Decimals

1. Determine if the fraction will be a finite or a repeating decimal.
2. If finite, multiply the fraction by factors of 2 and 5 until the denominator is equal to $(2 \times 5)^{n}=10^{n}$.
3. Rewrite the fraction as a decimal.

\qquad
\qquad
\qquad

Mr. Rogove
Date: \qquad

Steps for Rewriting Decimals (Finite and Infinite) in Expanded Form Using the

 Powers of 101. Represent each digit as a number with a denominator that is a power of 10 .
2. Determine the decimal is finite (terminating) or infinite.
3. If required, draw number lines to represent the decimal.

\qquad Period \qquad
Mr. Rogove
Date: \qquad

INDEPENDENT PRACTICE:
Rewrite Using the Powers of 10 and represent on a number line

\qquad , Period \qquad

Mr. Rogove

Date: \qquad

Activating Prior KnOWLEDGE:

We can rewrite fractions as decimals

$\frac{3}{10^{3}}$	$\frac{14}{10^{4}}$

CLOSURE:

Does the fraction $\frac{22}{7}$ have a repeating or terminating decimal? How do you know?

Notes:

This maps to Lesson 7 and 8 from Module 7 Grade 8

