Mr. Rogove

Date:_____

LEARNING OBJECTIVE: We will convert repeating decimals to fractions. (G8M7L7)

ACTIVATING PRIOR KNOWLEDGE:

We can solve systems of equations using substitution

$$\begin{cases} x + y = 15 \\ y = 3x - 3 \end{cases}$$

$$\begin{cases} 2x + y = 21 \\ y = 3x + 1 \end{cases}$$

$$2x + 3x + 1 = 21$$

CONCEPT DEVELOPMENT:

Repeating Decimals: Numbers with infinite decimal expansions that repeat are rational numbers.

Example: $\frac{4}{11}$, $0.\overline{253}$

036

We would know what to do to convert 0.35 to a fraction, but what about $0.\overline{35}$?

$$0.35 = \frac{35}{100} = \frac{7}{20}$$

We can use linear equations to convert repeating decimals into fractions.

<u>Even though repeating decimals are infinite</u>, when we work with them, we treat them as finite. Why?

Mr. Rogove

Date:

GUIDED PRACTICE:

Steps to Converting from a Repeating Decimal to a Fraction

- 1. Let *x* equal the repeating decimal.
- 2. Multiply both sides of the equation by a power of ten depending on how many digits are repeating.
- 3. Rewrite the right side as a whole number plus *x*.
- 4. Use properties of equality to isolate your variable.

$$0.81$$
Let $x = 0.81$

$$100x = 100(0.81)$$

$$100x = 81.81$$

$$100x = 81 + x$$

$$-x$$

$$-x$$

$$\frac{99x = 81}{99}$$

$$x = \frac{81}{99} = \frac{9}{11}$$

$$0.81 = \frac{9}{11}$$

$$0.\overline{123}$$

 $X = 0.\overline{123}$
 $1000\chi = 133.\overline{123}$
 $1000\chi = 123 + \chi$
 $-\chi$
 $-$

$$0.\overline{567}$$

$$X = 0.\overline{567}$$

$$|000x = 567.\overline{567}$$

$$1000x = 567 + \chi$$

$$-\chi$$

$$-\chi$$

$$999x = 567$$

$$189$$

$$189$$

$$189$$

$$181$$

$$333$$

$$111$$

$$37$$

Mr. Rogove

Date:_____

$$|700x = 313\frac{9}{9}$$

$$|700x = \frac{1935}{9}$$

$$|700 = \frac{77}{36}$$

$$\begin{array}{c}
x = 1.6\overline{23} \\
10x = 16.\overline{33} \\
y = 16.\overline{33} \\
y = 33.\overline{33} \\
100y = 33.\overline{33} \\
y = 33.\overline{33} \\
y = 33.\overline{33} \\
10x = 1607 \\
10x$$

INDEPENDENT PRACTICE:

 $1.\overline{12}$

 $0.03\bar{2}$

NAME:	Math, Period
Mr. Rogove	Date:
0.312	1.9032
$0.\overline{50}$	$3.0\overline{15}$
I	

NAME:	Math, Period
Mr. Rogove	Date:

CLOSURE:

What is the difference in how you'd convert the two repeating decimals to fractions:

 $2.\overline{34} \ v. 2.3\overline{4}$

Notes:

This maps to Lesson 10 from Module 7