$\qquad$
$\qquad$ , Period $\qquad$
$\qquad$

LEARNING OBJECTIVE: We will convert repeating decimals to fractions. (G8M7L7)

## Activating Prior KnowLedge:

We can solve systems of equations using substitution


## CONCEPT DEVELOPMENT:

Repeating Decimals: Numbers with infinite decimal expansions that repeat are rational numbers.
Example: $\frac{4}{11}, \quad 0 . \overline{253}$

We would know what to do to convert 0.35 to a fraction, but what about $0 . \overline{35}$ ?

$$
\frac{35}{100 \div 5} \div \frac{7}{20}
$$

We can use linear equations to convert repeating decimals into fractions.

Even though repeating decimals are infinite, when we work with them, we treat them as finite. Why?

Wham Decimals repeat, they become less significant.

$$
.33333333=\overline{3}
$$

$\qquad$
$\qquad$ , Period $\qquad$

Mr. Rogove
Date: $\qquad$

## Guided Practice:

## Steps to Converting from a Repeating Decimal to a Fraction

1. Let $x$ equal the repeating decimal.
2. Multiply both sides of the equation by a power of ten depending on how many digits are repeating.
3. Rewrite the right side as a whole number plus $x$.
4. Use properties of equality to isolate your variable.

| Let $x=0 . \overline{81}$ $\begin{aligned} 100 x & =81 . \overline{81} \\ 100 x & =81+x \\ -x & -x \\ \frac{99 x}{99} & =81 \\ x & =\frac{81}{99} \div \frac{9}{9} \\ x & =\frac{9}{11} \\ x & =\frac{9}{11} \end{aligned}$ | $\begin{gathered} 0 . \overline{39} \\ x=. \overline{39} \\ 100 x=39 . \overline{39} \\ 100 x=39+x \\ \frac{-x}{\frac{99 x}{99}}=\frac{-x}{39} \\ x=\frac{13}{33} \end{gathered}$ |
| :---: | :---: |
| $\begin{aligned} x & =\frac{0 . \overline{123}}{123} \\ 1000 x & =123.123 \\ 1000 x & =123+x \\ \frac{-x}{999 x} & =\frac{123}{999} \\ x & =\frac{41}{333} \end{aligned}$ | $\begin{aligned} & x=.567 \\ & 1000 x=567.567 \\ & 1000 x=567+x \\ &-\quad x \\ & \frac{999 x}{99 x}=\frac{567}{999} \\ & x=\frac{21}{37} \end{aligned}$ |

$\qquad$
$\qquad$ , Period $\qquad$

Mr. Rogove
Date: $\qquad$


INDEPENDENT PRACTICE:

| $1 . \overline{12}$ | $0.03 \overline{2}$ |
| :--- | :--- |
|  |  |

$\qquad$ , Period $\qquad$
Mr. Rogove
Date: $\qquad$

| $0 . \overline{312}$ | $1.90 \overline{32}$ |
| :---: | :---: |
| $0 . \overline{50}$ |  |
|  |  |

$\qquad$ Period $\qquad$
Mr. Rogove
Date: $\qquad$

## CLOSURE:

What is the difference in how you'd convert the two repeating decimals to fractions:

$$
2 . \overline{34} v .2 .3 \overline{4}
$$

## NOTES:

This maps to Lesson 10 from Module 7

