NI	٨	١л	Г	
IN.	н	IvI	Ľ	÷.,

Math _	, Period	
--------	----------	--

Date:

LEARNING OBJECTIVE: We will prove the Pythagorean theorem using similar triangles. (G8M7L9)

CONCEPT DEVELOPMENT:

We can use similar triangles to provide another proof of the Pythagorean Theorem:

G8M7L9: More proofs of the Pythagorean Theorem

ΝT	Λ.	ъл	г.	
IN	Δ	11/1	н.	
11.	41	1 1 1	ы.	
				1

Date:_____

Another Proof using Similar Triangles and Areas

Date:_____

GUIDED PRACTICE:

Steps for Proving the Pythagorean Theorem Using Similar Triangles 1. Draw a line from the right angle perpendicular to the hypotenuse. This will create three similar triangles.

2. Label, reorient, and draw the three similar triangles.

3. Set up a series of proportions to show that $a^2 + b^2 = c^2$ using the steps demonstrated on the first page of the notes.

Date:_____

NAME:____

Math, Period	
--------------	--

Mr. Rogove

Date:_____

INDEPENDENT PRACTICE:

No independent practice...

ACTIVATING PRIOR KNOWLEDGE:

We know the Pythagorean Theorem is $a^2 + b^2 = c^2$ AND we know one way to prove it.

NOTES:

Maps to Grade 8, Lesson 15, Module 7.

HW could be lesson 15 problem set minus probs 1-2.