\qquad
\qquad Period \qquad
\qquad

LEARNING OBJECTIVE: We will prove the Pythagorean theorem using similar triangles. (G8M7L9)

CONCEPT DEVELOPMENT:

We can use similar triangles to provide another proof of the Pythagorean Theorem:

Name these three triangles
$\triangle D A C$

Are these three triangles similar?
$\triangle D A C \sim \triangle C A B A^{A D}$ Similarity!
$\triangle C A B \sim \triangle D C B$
AA similarity

Proving the Pythagorean Theorem:
CORRESPONDING SIDES of SIMILLR \triangle 's ARE PROPDRTIONNL

$$
\frac{\overline{A B}}{\overline{A C}} \times \frac{\overline{A C}}{A D}(\overline{A C})^{2}=\overline{A B} \cdot \overline{A D}
$$

$$
b^{2}=\overline{A B} \cdot \overline{A D}
$$

$$
\frac{\overline{A B}}{\overline{B C}} \times \frac{\overline{B C}}{\overline{B D}}(\overline{B C})^{2}=\overline{A B} \cdot \overline{B D} \quad a^{2}=\overline{A B} \cdot \overline{B D}
$$

$$
a^{2}+b^{2}=(\overline{A B} \cdot \overrightarrow{A D})+(\overline{A B} \cdot \overline{B D})
$$

$$
a^{2}+b^{2}=\overline{A B}(\overline{A D}+\overline{B D})
$$

$$
a^{2}+b^{2}=(\overline{A B})(\overline{A B})
$$

$$
a^{2}+b^{2}=(\overline{A B})^{2}
$$

$$
a^{2}+b^{2}=c^{2}
$$

\qquad , Period \qquad
Mr. Rogove
Date: \qquad

Another Proof using Similar Triangles and Areas
$x^{2} \rightarrow \operatorname{area!}$

\qquad
\qquad , Period \qquad
Mr. Rogove
Date: \qquad
GUIDED PRACTICE:
Steps for Proving the Pythagorean Theorem Using Similar Triangles

1. Draw a line from the right angle perpendicular to the hypotenuse. This will create three similar triangles.
2. Label, reorient, and draw the three similar triangles.
3. Set up a series of proportions to show that $a^{2}+b^{2}=c^{2}$ using the steps demonstrated on the first page of the notes.

\qquad , Period \qquad
\qquad

INDEPENDENT PRACTICE:

No independent practice...

Activating Prior Knowledge:

We know the Pythagorean Theorem is $a^{2}+b^{2}=c^{2}$ AND we know one way to prove it.

CLOSURE:

Why are the three triangles created during the proof simitiar?

Notes:

Maps to Grade 8, Lesson 15, Module 7.
HW could be lesson 15 problem set minus probs 1-2.

