NAM	(E:

Math 7.2, Period _____

Mr. Rogove

Da			
บา	to:		
111	16.		

LEARNING OBJECTIVE: We will use row relative frequencies and column relative frequencies to determine if there is an association between two categorical variables. (Lesson 66)

CONCEPT DEVELOPMENT:

ASSOCIATION BETWEEN TWO CATEGORICAL VARIABLES

No Association

ASSOCIATION

This means that knowing the value of one variable **provides no** information about the value of the other variable.

Knowing the value if one variable **will provide** information about the value of the other variable.

If **row relative frequencies** (or column relative frequencies) are about the same for all of the rows (or columns), it is reasonable to say there is no association between the two variables.

If the **row relative frequencies** (or column relative frequencies) are quite different for some of the rows (or columns), it is reasonable to say there is an association between the two variables.

Example: Smartphone Use and Gender

Example: Smartphone Use and Age

	Use Smart phone	Do not Use Smart phone	Total
Male	30 **	10 • 25	40 1.00
Female	45 ***	15/JS	60 / 00
Total	75 13	25 •as	100
36AT 36AU 26AU 26AU	surveyed makes "I Femdes "I	u se Sm 11	artphones

	Use Smart phone	Do not Use Smart phone	Total
Under			
40	45	5	50
years of age	.90	a1D	
40	•		
years of age or	30	20	50
older	≈ 60	4 0	
Total			
	75 • T	25 ,A(100

People who are under 40 tend to use smartphones more than 40+ year als

Nofsciation

GUIDED PRACTICE:

Steps for Determining Whether or Not There is an Association

- 1. Calculate Row Relative Frequencies and Column Relative Frequencies.
- 2. Observe the row relative frequencies for each row. If they are similar, there is no association.
- 3. If there are differences, state the association.

Below is the data collected from our survey that captures gender and our favorite sport to WATCH.

ar or ree spor	0 00 111110	,				
	Baseball	Basketball	Football	Hockey	Soccer	Grand Total
Female	10	8	7	3	12	40
Male	12	9	8	4	14	47
Grand Total	22	17	15	7	26	87
	. ع ر	<u> </u>	7او ن	-	ეზ " პ	O

1. Fill in the table below with the **row relative frequencies** of each sport watched for the male row and the female row.

	Baseball	Basketball	Football	Hockey	Soccer	Grand Total
Female	,25	. 20	18	- 08	, 30	1.00
Male	.26	,19	.]7	.09	,30	1.00

2. Is there an association between gender and the type of sports we like to watch? Explain to association. Row relative frequencies are even the same proportion of boys Egins like to water each sport.

3. Fill in the table below with the **column relative frequencies** of each gender for the columns related to sports we watch.

	Baseball Ba	sketball F	ootball H	ockey S	occer
Female					
Male					
Grand Total	1.00	1.00	1.00	1.00	1.00

4. Is there an association between the type of sports we like to watch and our gender? Explain.

NAME:	Math 7.2, Period
Mr. Rogove	Date:

Below is data collected from our survey capturing gender and movie preference.

- 1. Fill in the table below that summarizes the data.
 - There were 47 boys surveyed and 87 people total
 - 18 girls liked comedies
 - 27 students overall liked action movies
 - 5 students overall liked dramas
- 18 boys liked action movies
- 1 boy liked dramas
- 33 students overall liked comedies

	Action	Comedy	Drama	Science Fiction	TOTAL
Male					
Female					
TOTAL					

2. If there were NO association between gender and movie preference, would you expect more boys than girls to like dramas or less boys than girls to like drama movies? Explain.

3. Fill in the table below with **row relative frequencies** of each movie preference for both genders.

	Action	Action Comedy Drama Science Fiction					
Male							
Female							

4. If you were to select a student at random, what movie type would you think they prefer? Explain why you made this choice.

NAME:	Math 7.2, Period
Mr. Rogove	Date:

5. If you found out that the randomly selected student is male, would you predict that they preferred comedies? Why or why not?

6. Does knowing the gender of a student help you make predict what type of movie they will like?

7. Fill in the table below with the **column relative frequencies** of each gender for the movie preferences.

	Movie Preference					
	Action	Comedy	Drama	Science Fiction		
Male						
Female						
TOTAL						

8. If you were to select a student at random would you expect them to be a boy or a girl? Explain your answer.

9. If you were told that the randomly selected student preferred to watch dramas, would you think they were a boy?

10. Is there an association between the movies we like and our gender?

NAME:	Math 7.2, Period		
Mr. Rogove	Date:		

INDEPENDENT PRACTICE:

Our survey also looked at the amount of sleep and how students got to school. Below is the data presented in a two way table.

		Amount of Sleep			
		Less than 6	Between 6 and	More than	Total
		hours	8 hours	8 hours	
Mode of	Bike	0	9	12	21
transpo					
rtation	Walk	0	9	9	18
	In car/	3	20	25	48
	scooter				
	Total	3	38	46	87

1. If there was no association between how students get to school and the amount of sleep they get each night, would you expect that more bike riders get over hours of sleep or less than 8 hours of sleep? Explain your answer.

2. Draw a row relative frequency table of each of the nightly sleep amounts for the specific modes of transportation.

•		Amount of Sleep			
		Less than 6	Between 6 and	More than	Total
		hours	8 hours	8 hours	
Mode of	Bike				
transpo					
rtation	Walk				
	In car/				
	scooter				

3. Do these data suggest an association between the amount of sleep students get and how they get to school? Explain your answers.

ACTIVATING PRIOR KNOWLEDGE:

A pregnant woman will often undergo an ultrasound test to monitor her baby's health. These tests can also be used to predict the gender of the baby, but it's not always 100% accurate. Below, data on gender predicted by ultrasound and actual gender of the baby for 1,000 babies is summarized below.

		Predicted		
		Female	Male	_
ual der	Female	432	48	480
Actu	Male	130	390	520
		562	438	

- 1. What is the proportion of the 1,000 babies who were predicted to be female but were actually male? $\frac{130}{562} = .33$
- 2. For the babies predicted to be female, what proportion of the predictions were correct?
- 3. For the babies predicted to be male, what proportion of the predictions were incorrect?

CLOSURE:

Give exit Ticket from Lesson 14? (can be page 5 of the lesson handout)

NOTES: This is lesson 14 from Module 6 Grade 8