Date:_____

LEARNING OBJECTIVE: We will solve equations involving square roots and cube roots. (Lesson 69)

CONCEPT DEVELOPMENT:

CONCEPT DEVELOPMENT:			_
Find a Rule Part 1		Find a Rule Part 2	
1	1	1	1
2	4	2	8
3	9	3	27
9	81	5	125
11	121	6	21.6
15	225	11 און און	33
7	49	4	64
10	100	10	1000
12	144	7	343
/3	169	14	2,744
m) ma	p	P
Tha	n	(3/9)	q
Take the first # and Square It!		Take the 1st # and	

Cube Roots: The cube root of a number, x, is the number, y which satisfy the cube it!

equation $x = y^3$. The notation we use is as follows: $\sqrt[3]{x} = y$

Example: $8 = 2^3$ and $\sqrt[3]{8} = 2$

The properties of equality extend to square roots and cube roots.

Example: If $x^2 = 36$, then $\sqrt{x^2} = \sqrt{36}$

Date:

GUIDED PRACTICE:

Steps for Solving Equations With Square Roots and Cube Roots

- 1. If necessary, isolate the term that is squared or cubed.
- 2. Take the square root or cube root of both sides of the equation and find the positive value that makes the equation true.
- 3. Check your solution.

$$x^{2} = 576$$

$$x^{2} = 576$$

$$x = 24$$

A square shaped strawberry patch has an exact area of 256 square acres. What are the dimensions of the patch? Write and solve an equation.

$$x^{2}=256$$
 $\sqrt{x^{2}}=\sqrt{256}$
 $x=16$
The particle is 1 bears x 1 bears

An oversized die has a volume of 64 cubic millimeters. Find the dimensions of the die. Write and solve an equation.

$$\frac{3}{x^3} = \frac{3}{64}$$
 $x = 4$

$$\begin{array}{c} x = 301 \\ \sqrt{\chi^2 = 1} \\ \frac{1}{361} \\ \chi = \frac{1}{19} \\ \frac{1}{19} \cdot \frac{1}{19} = \frac{1}{361} = 361^{-1} \end{array}$$

$$x^3 = 216$$

$$3 \times 3 = 216$$

$$216$$

Date:_____

$$x^3 = 343^{-1}$$

$$x^3 = 1000^{-1}$$

$$\frac{x^2 - 18 = 63}{+ ||f| + ||f||}$$

$$x^2 + 9 = 130$$

$$x^3 + 19 = 144$$

$$x^3 - 54 = -27$$

Date:_____

INDEPENDENT PRACTICE:

N/A

ACTIVATING PRIOR KNOWLEDGE:

CLOSURE:

Is 6 a solution for the following equation?

$$x^2 = 5x + 4$$

Notes:

Homework could be Khan Cube Roots, This aligns with lesson 3. Can also give PoW quilts for homework.