Date:

LEARNING OBJECTIVE: We will find positive solutions for equations involving square roots and cube roots. (Lesson 71)

ACTIVATING PRIOR KNOWLEDGE:

We can solve linear equations (solve for x)

$$-2(5x-3) = x + 28$$

$$-10x+6 = x+28$$

$$-x - x$$

$$-11x+6 = 28$$

$$-6 - 6$$

$$-11x = 22$$

$$-11 = 22$$

$$-11 = 22$$

$$9x - 5 = \frac{1}{3}(6x - 78)$$

X=-3

CONCEPT DEVELOPMENT:

Solving non-linear equations has some of the same elements...our goal remains the same in solving equations:

Solve for x

positive!

We can simplify the expressions until we have the form of $x^2 = p$ or $x^3 = p$ and then take the square root or cube root of both sides of the equation to solve for x.

Example:

$$x^{3} + 9x = \frac{1}{2}(18x + 54)$$

$$x^{3} + 9x = 9x + 27$$

$$-9x - 9x$$

$$x^{3} = 27$$

$$x^{3} = 3$$

$$x^{3} = 3$$

Date:

GUIDED PRACTICE:

Steps to Solving Equations Involving Square Roots and Cube Roots

- 1. Use the properties of equality to transform the equation to the form of $x^2 = p$ or $x^3 = p$.
- 2. Solve for x by taking the square root (or cube root) of both sides of the equation.
- 3. Check your work by substituting the positive solution for your unknown value into the exercise.

$$x^{2} + 4x = 4(x + 16)$$

$$x^{2} + 4x = \frac{4}{4}(x + 16)$$

$$x^{2} + 4x = \frac{4}{4}(x + 16)$$

$$x^{2} - 14 = \frac{5}{2}x + 67 - \frac{5}{2}x$$

$$x^{2} - 14 = \frac{5}{4}(x + 16)$$

$$x^{2} - 14 = \frac{5}{4}(x + 1$$

A square yard has a side length 2x - 1 and an area of 121 square yards. What is the value of x?

$$(2x-1)^{2} = 2x-1$$

$$\sqrt{(2x-1)^{2}} = \sqrt{121}$$

$$2x-1$$

$$2x-1$$

$$2x-1 = 11$$

$$x=b$$

A square has a side length of 3x and an area of 324 square inches. What is the

value of x?

$$3x^{2} + 3x^{2}$$
 $3x^{2} + 3x^{2}$
 $3x^{2} + 3x^{2}$

$$(4x)^{3} = 1,728$$

$$6+x^{3} = 1,728$$

$$6+x^{3} = 1,728$$

$$4+x^{3} =$$

$$-3x^3 + 14 = -67$$

Date:_____

$$x(2x^{2}-5) + 3x = -2x + 1024$$

$$2x^{3}-5x+3x=-2x+1024$$

$$2x^{3}-2x=-2x+1024$$

$$+2x+2x$$

$$+2x+3x=-2x+1024$$

$$216 + x = x(x^{2} - 5) + 6x$$

$$216 + x = x^{3} - 5x + 6x$$

$$216 + x = x^{3} + x$$

$$-x - y$$

$$216 = x^{3}$$

$$3\sqrt{216} = x^{3}$$

$$4 = x^{3}$$

$$3\sqrt{216} = x^{3}$$

$$-\frac{1}{2} \left(\frac{6\sqrt{2x}}{2x} \right)^{2} - 2x = \frac{1}{2} \left(\frac{144 - 4x}{144 - 4x} \right)$$

$$-\frac{1}{2} \left(\frac{144 - 4x}{144 - 4x} \right)$$

$$(2\sqrt{x})^{2} - (6x + 2) = 3(3 - 2x) + 29 *$$

$$2^{3} - \sqrt{x^{2}} - 6x - \lambda = 9 - 6x + 29$$

$$4x - 6x - \lambda = 38 - 6x$$

$$+6x + 4$$

$$4x - \lambda = 38$$

$$+ \lambda + \lambda$$

$$4x = \frac{40}{4}$$

$$x = 10$$

$$CH4CK$$

$$(2 - 16) - (6(16) + \lambda) = 3(3 - 2(16)) + 29$$

$$40 - 6\lambda = 9 - 60 + 29$$

$$-2\lambda = 2$$

Date:_____

INDEPENDENT PRACTICE:

No ind Prac. Can give out homework

CLOSURE:

Solve for *x*:

$$\frac{1}{2}(2x^{2} + 10) = 30$$

$$\times (2x^{2})$$

$$\times \cdot 2 \cdot x \cdot x \quad dx^{3} \quad x^{3} + 2x$$

Notes:

Aligns to lesson 5 grade 8 module 7. Homework should be problem set from lesson 5.