Date:_

LEARNING OBJECTIVE: We will prove the Pythagorean theorem using similar triangles. (Lesson 75)

CONCEPT DEVELOPMENT:

We can use similar triangles to provide another proof of the Pythagorean Theorem:

Name these three triangles

Are these three triangles similar? AA Similarity.

 \triangle ACD \wedge \triangle ABC \rightarrow AA Similar ity \triangle ABC \wedge \triangle CBD \rightarrow AA Similar ity. Proving the Pythagorean Theorem:

CORRESPONDING SIDES OF SIMILAR A'S ARE PROPORTIONAL

$$\frac{AC}{AD} \times \frac{\overline{AB}}{\overline{AC}} \times \frac{\overline{AB}}{\overline{AC}} \times \frac{\overline{AC}}{\overline{BC}} \times \frac{\overline{AC}}{\overline{AC}} \times \frac{\overline{AC}}{\overline{AC}}$$

$$(\overline{AC})^2 = (\overline{AD})(\overline{AB})$$

$$P_{S} = (\underline{v}\underline{D}) \cdot C$$

$$a^{2}+b^{2} = \overline{AD \cdot c} + \overline{BD \cdot c}$$

$$a^{2}+b^{2} = c \cdot c$$

$$a^{2}+b^{2} = c \cdot c$$

Date:_____

Another Proof using Similar Triangles and Areas

Date:_____

GUIDED PRACTICE:

Steps for Proving the Pythagorean Theorem Using Similar Triangles

- 1. Draw a line from the right angle perpendicular to the hypotenuse. This will create three similar triangles.
- 2. Label, reorient, and draw the three similar triangles.
- 3. Set up a series of proportions to show that $a^2 + b^2 = c^2$ using the steps demonstrated on the first page of the notes.

Date:_____

Date:_____

INDEPENDENT PRACTICE:

No independent practice...

ACTIVATING PRIOR KNOWLEDGE:

We know the Pythagorean Theorem is $a^2+b^2=c^2$ AND we know one way to prove it.

$$(a+b)^{2} = c^{2} + 4(\frac{1}{2}ab)$$

$$(a+b)(a+b) = c^{2} + 2ab$$

$$a^{2} + ab + ba + b^{2} = c^{2} + 2ab$$

$$a^{2} + 2ab + b^{2} = c^{2} + 2ab$$

$$-2ab$$

$$-2ab$$

$$a^{2} + b^{2} = c^{2}$$

CLOSURE:

Why are the three triangles created during the proof similar?

NOTES:

Maps to Grade 8, Lesson 15, Module 7.