Mr. Rogove

Date: _____

LEARNING OBJECTIVE: We will apply the Pythagorean Theorem and its converse to solve problems. (Lesson 76)

ACTIVATING PRIOR KNOWLEDGE:

We know how to apply the Pythagorean Theorem to find the lengths of sides of right triangles.

CONCEPT DEVELOPMENT:

The Converse of the Pythagorean Theorem

If the lengths of three sides of a triangle, a, b and c satisfy $a^2 + b^2 = c^2$, then the triangle is a right triangle, and furthermore, the side of length c is opposite the right angle (it's the hypotenuse).

Mr. Rogove

Date:

GUIDED PRACTICE:

Steps for Identifying a Right Triangle

- 1. Identify the lengths of the sides of a triangle.
- 2. Determine if the sum of the squares of the lengths of the 2 shorter sides is equal to the square of the longest sides.
- 2a. If yes to above, then you triangle is a right triangle, and the longest side is the hypotenuse, located opposite the right angle.
- 2b. If no to above, then you do not have a right triangle.

Is the triangle with side lengths of 3 inches, 8 inches and $\sqrt{73}$ inches a right triangle? Why or why not?

Is the triangle with side lengths of 1 meter, 4 meters, and $\sqrt{17}$ meters a right triangle? Why or why not?

$$1^{2}+4^{2}=(\sqrt{17})^{2}$$
 $1+16=17$
 $17=17$
 $1=17$
 $1=17$
 $1=17$
 $1=17$

What is the length of the unknown side that would make this a right triangle?

What is the length of the unknown side that would make this a right triangle?

Is the triangle with lengths of 9 feet, 9 feet, and $\sqrt{175}$ a right triangle? Why? Why not?

Is the triangle with lengths of 2 centimeters, 6 centimeters, and $3\sqrt{5}$ centimeters a right triangle? Why or why not?

Name:	Math 7.2, Period
Mr. Rogove	Date:
INDEPENDENT PRACTICE: Problem Set for Independent Practice??	
CLOSURE: Give exit ticket for lesson 16 module 7 grade 8	
NOTES: Lesson maps to Lesson 16, Grade 8, Module 7	