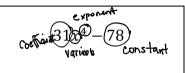

Mr. Rogove

Date:


LEARNING OBJECTIVE: We will classify polynomials. (Lesson 80)

ACTIVATING PRIOR KNOWLEDGE:

We already know how to classify terms: identify each part of the term: coefficient, variable, and exponent, if they exist.

17-> coefficient y Variable

CONCEPT DEVELOPMENT:

MULT.

Non-examples:

Monomial: A monomial is a number, variable, or product of numbers and variables that have whole number exponents. A monomial cannot have more than 1 term, and it cannot have a variable in the denominator.

Examples:

x, -7xy, $0.5x^4$ 5.

Polynomial: A polynomial is a monomial or the sum of more than one monomial $\frac{8}{2}$ $\frac{8}{4}$ $\frac{1}{2}$ $\frac{1}{2$

Binomial: A binomial is a polynomial with two terms. Example: $4x^5 + 12x$

Trinomial: A trinomial is a polynomial with three terms. Example: $81v^4 - 11v^3 + 17$

Degree of a Polynomial: the greatest sum of the exponents on the variables in each

Examples: $5x^{0} + 3x^{3}$ is a fourth degree polynomial. $3x^{0}y^{0} + 5y^{4}$ is a fifth degree polynomial.

6th degree: 9x2z4+6y3 · 5xty2+by Sabcdet Mr. Rogove

Date: _____

GUIDED PRACTICE: **Steps for Classifying Polynomials by Degree and Terms**

- 1. Count the number of terms.
- 2. Add up the exponents for the variables in each term. Assign the degree based on the highest number.

6x3-5x2y2 2-terms - Binomicl 4th Degree DINOMIal	35 + 2n2+8n Trinomial and degree trinonial quadratic " 2n2+8n+243
3x ² y ² + 4xy ² + 5xy 4 th Degree +rinomial	$4p^2q^2 - 5pq + q^5$ $5^{\frac{1}{12}} \text{ degree + r momial}$
$x^3y^2 + x^{25}$ $Not = Polynomial$	$3y^2 - \frac{4}{x^3}$ No polynomial No variables in accommator
$\frac{15g^2h + 3g^2}{3rd degree}$ Dinomial	$\frac{8a^2b - 13ab^2}{25d}$ $\frac{35d}{25}$ $\frac{3ab^2}{25}$ $\frac{3ab^2}{25}$

Mr. Rogove

Date:

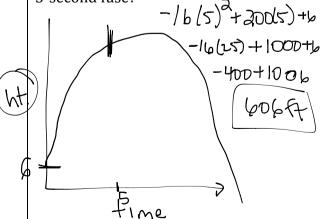
Steps For Simplifying Polynomials

- 1. Use the commutative property to rearrange the terms in descending order of exponents.
- 2. Use the distributive property to combine like terms.
- 3. Simplify.

$$\frac{3r^{3} + 2r^{2} + 5r^{2}}{(3r^{3} + (4r^{3})) + (-\lambda r^{3}) + 5r^{2}}$$

$$-r^{3} + 3r^{2}$$

$$3d^{6} B_{100rijol}$$


$$\frac{p^{2}q^{5} + 4p^{5}q^{4} + 4p^{2}q^{5} + 3p^{5}q^{4}}{=} - 4p^{3}q^{5} + 4p^{5}q^{4} + 3p^{5}q^{4} + 2p^{5}q^{5} + 4p^{3}q^{5} + 4p^{3}q^{5}$$

$$-p^{5}q^{4} - 3p^{2}q^{5} \qquad q^{6} \text{ Binomial}$$

$$\frac{5r^{3} + r^{2}s + 6 + 3r^{2}s + r^{3} + 2^{5}32}{[5r^{3} + (-r^{3}) + (-r^{3}) + (-3r^{4}s) + (-3r^{4}s)$$

$$7a^2 - ab - 75 - 5ab + a^2 + 5^3$$

A skyrocket is launched from a 6 foot high platform with an initial speed of 200 feet per second. The polynomial $-16t^2 + 200t + 6$ gives us the height in feet that the rocket will rise in t seconds. How high will the rocket rise if it has a 5-second fuse?

A separate rocket is launched from the top of a building, 50 feet high with an initial speed of 200 feet per second. Its flight can be modeled by the equation $H = -16t^2 + 200t + 50$, where H is the height after the rocket has been traveling for t seconds. How high is the rocket after 3 seconds?

Name:	Math 7.2, Period
Mr. Rogove	Date:
S	

INDEPENDENT PRACTICE:

Give out exercise set C for practice.

CLOSURE:

The number of cells in a bacteria colony increases according to the expression $t^2 + 4t + 4$ with t representing the time in seconds that colony is allowed to grow at 20° C and $t^2 + 3t + 4$ when the colony grows at 30° C.

- 1. After 1 minute, which will be greater in number, a colony at 20°C or 30°C?
- 2. After 10 minutes, how will the colonies compare in size?

Notes:

This is Go Math Pilot, mapping to lesson 14-1. There is not a good match to material in ENY Alg 1 for this lesson, but it's foundational to the rest of the module.

Do Visual Patterns Pattern 14 and 15.