Name:	
-------	--

Math 7.2, Period _____

Mr. Rogove

Date:

LEARNING OBJECTIVE: We will solve linear inequalities in two variables. (Lesson 90)

CONCEPT DEVELOPMENT:

Recall a **linear equation** is an equation in two variables. The solution is a typically a straight line on a coordinate plane.

Examples:

Linear Inequalities result when you replace the equal sign an inequality symbol. The solution is a region on a coordinate plane that is determined by the boundary line.

boundary line. $2x-3y \ge b \qquad \frac{Example}{2x-3y} \ge 6$ $2(x)-3(x) \ge b \qquad -2x \qquad -2x$ $2(x)-3(x) \ge b \qquad \frac{-3y}{2} \ge -2x + b$ $2(x)-3(x) \ge b \qquad \frac{-3y}{2} \ge -2x + b$ $2(x)-3(x) \ge b \qquad \frac{-3y}{2} \ge -2x + b$ $2(x)-3(x) \ge b \qquad \frac{-3y}{2} \ge -2x + b$ $2(x)-3(x) \ge b \qquad \frac{-3y}{2} \ge -2x + b$ $2(x)-3(x) \ge b \qquad \frac{-3y}{2} \ge -2x + b$ $2(x)-3(x) \ge b \qquad \frac{-3y}{2} \ge -2x + b$ $2(x)-3(x) \ge b \qquad \frac{-3y}{2} \ge -2x + b$ $2(x)-3(x) \ge b \qquad \frac{-3y}{2} \ge -2x + b$ $2(x)-3(x) \ge b \qquad \frac{-3y}{2} \ge -2x + b$ $2(x)-3(x) \ge b \qquad \frac{-3y}{2} \ge -2x + b$ $2(x)-3(x) \ge b \qquad \frac{-3y}{2} \ge -2x + b$ $2(x)-3(x) \ge b \qquad \frac{-3y}{2} \ge -2x + b$ $2(x)-3(x) \ge b \qquad \frac{-3y}{2} \ge -2x + b$ $2(x)-3(x) \ge b \qquad \frac{-3y}{2} \ge -2x + b$ $2(x)-3(x) \ge b \qquad \frac{-3y}{2} \ge -2x + b$

half-plane: a solution set Lesson 90 of a linear inequality in 2 variables.

Lesson 90: Linear Inequalities in Two Variables

Mr. Rogove

Date:

GUIDED PRACTICE:

Steps for Graphing Inequalities in Two Variables

- 1. Change the inequality (as needed) so that the inequality resembles slopeintercept form.
- 2. Temporarily replace the inequality sign with an equal sign.
- 3. Graph the linear equation.
- 4. Reinsert the inequality sign.
- 5. If the line is a PART of the solution ($\leq or \geq$), the graph is a solid line. If the line is NOT a part of the solution ($\langle or \rangle$), the graph is a dashed line.
- 6. If the inequality is greater than $(> or \ge)$ shade the area ABOVE the line. If the inequality is less than $(< or \le)$, shade the area BELOW the line.

Graph
$$4x - y \le 10$$

$$-4x$$

$$-\frac{1}{2} \le -\frac{4x}{-1} + \frac{10}{-1}$$

$$\Rightarrow 4x - 10$$

Mr. Rogove

Date: _____

Graph
$$3x + 2y > 10$$

 $-3x$ $-3x$
 $3x - 3x + 10$

$$\frac{2y}{a} > -3x + 10$$

$$\frac{3}{a} = \frac{3}{a} \times +5$$

Graph
$$x - y > 6$$

$$-X \qquad -X$$

$$-\frac{y}{-1} - \frac{x}{1}$$

$$\frac{y}{1} + \frac{y}{1}$$

Mr. Rogove

Date: _____

Graph y > 1

Graph y > x

Graph y < x

Name:	Math 7.2, Period
Mr. Rogove	Date:

INDEPENDENT PRACTICE:

Two Khan Exercises: Graphs of Inequalities in Two Variables Graphing Linear Inequalities in Two Variables.

ACTIVATING PRIOR KNOWLEDGE:

CLOSURE:

Notes:

Maps to lesson 7-4 of Algebra 1 (GO MATH) and Lesson 21 of ENY Alg 1. HW Khan: Graphing and Solving Linear Inequalities