Date: _____ Mr. Rogove **LEARNING OBJECTIVE:** We will explore geometric patterns and write formulas for the patterns. (Lesson 94) # CONCEPT DEVELOPMENT: Ancient Greeks thought ALL of math was geometry related. Sequences of numbers were created based on the shapes they resembles. Example: What would this pattern be called? Create a Table of values Is there a formula that can tell us what numbers would satisfy the rule? $D(x) = X^{2}$ Dof x $D(x) = X^{2}$ The number of dots is equal to the Square of the Square of the Strp number. ## **GUIDED PRACTICE:** ## **Steps for Analyzing Geometric Patterns** - 1. Study the geometric image or picture carefully. What is happening as the pattern grows from one step to the next? - 2. Create a table. - 3. Write a formula that will help find the pattern in the n^{th} step. Create a table: Formula: How many puppies will there be on the 60^{th} step? How could you express this using the formula? P(b0)=2.10-1 = 119 Will there ever be a step with exactly 46 puppies? How do you know? No. 46 is even number. When you multiply by 2 and subtract 1, you will get odd #. What is P(253)? 505 # Mr. Rogove | Date: | | | |-------|--|--| | Date. | | | Formula: How many dots in the 66th step? $$D(66) = 4.66 = 264$$ Will D(n) = 66? Why or why not? Figure 2 Formula: $S(x)^{2}(x+1)^{2}+1$ = X(x+2)+2 How many squares will there be in the 13th figure? Find n if S(n) = 626 $$\chi^2 + 1\chi + 2 = 626$$ $\chi^{2}+\lambda_{x}+\lambda=626$ 24th step $\chi^{2}+\lambda_{x}-624=0$ Mr. Rogove | Date: | | | |-------|--|--| | Date. | | | Formula: Create a table: How many dots are in the 9th pattern? How many dots will be in the 13th row of the 12th pattern? How do you know? Will there ever be exactly 613 dots? If so, what pattern? | Name: | Math 7.2, Period | | |------------|------------------|--| | Mr. Dogovo | Data | | | Mr. Rogove | Date: | | ### **INDEPENDENT PRACTICE:** #### **ACTIVATING PRIOR KNOWLEDGE:** #### CLOSURE: Compare the following tables: | X | f(x) | |---|---------------| | 1 | $\frac{1}{2}$ | | 2 | 8 | | 3 | 18 | | 4 | 32 | | x | g(x) | |---|------| | 1 | -4 | | 2 | 8 | | 3 | 20 | | 4 | 32 | What is the difference in how the values change? What are the formulas for each table? What is f(10)? What is g(10)? #### Notes: Alg 1, Mod 3, Lesson 8 HW is problem set for Lesson 8. Do Desmos demo 30 minutes.